Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12209
DC FieldValueLanguage
dc.date.accessioned2019-02-01T09:22:52Zen
dc.date.available2019-02-01T09:22:52Zen
dc.date.issued2018-10-17en
dc.identifier.urihttp://hdl.handle.net/2122/12209en
dc.description.abstractIn this study, we present a new estimation of the gravitational potential energy (GPE) in Iberia and use numerical modeling to evaluate its relative contribution to the present‐day stress field and deformation. We also present an improved (larger time span and denser coverage) compilation of Global Navigation Satellite System velocities, which we use to compute the strain rate field of Iberia. We take advantage of recent neotectonic modeling developed for Iberia and northwest Africa to study the isolated dynamic contribution of GPE‐related stresses. We present two models—one including only the stress generated by GPE and another reproducing the net stress field—and compare their predictions with the most up‐to‐date compilations of stress indicators, hypocenter clusters, and geodetic strain rates. The main effect of GPE is to induce second‐order spatial variations in the stress field. GPE appears to play an important role in high‐topography regions, where it explains deviatoric stress patterns mainly associated with extensional regimes. In north Iberia, especially in the Pyrenees and Cantabria, GPE causes an extensional regime over the highest peaks. In the Iberian Chain and eastern Betics, GPE is in agreement with the observed extensional deformation. Normal focal mechanisms of shallow earthquake clusters appear to be related with GPE maxima and GPE‐induced extensional regimes. Wavelength analysis suggests that both GPE and the long‐wavelength topography of intraplate Iberia record the plate boundary forces that acted in Iberia during the Alpine orogeny at Eocene to lower Miocene times.en
dc.description.sponsorshipMinistry of Education and Science | Fundação para a Ciência e a Tecnologia (FCT). Grant Number: FCT UID/GEO/50019/2013 ‐ Instituto Dom Luiz. FCT. Grant Number: UID/GEO/50019/2013en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Research: Solid Earthen
dc.relation.ispartofseries/123 (2018)en
dc.subjectIberiaen
dc.subjectGravitational Potentialen
dc.subjectstress fielden
dc.subjectstrain ratesen
dc.subjectintraplate deformationen
dc.subjectplate driving mechanismen
dc.titleGravitational Potential Energy in Iberia: A Driver of Active Deformation in High-Topography Regionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber10277-10296en
dc.identifier.URLhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017JB015002#en
dc.subject.INGVGravitational Potential Energy in Iberiaen
dc.identifier.doi10.1029/2017JB015002en
dc.relation.referencesAmante, C., & C. W. Eakins (2009). ETOPO1 1 Arc‐Minute Global Relief Model: Procedures, data sources and analysis NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M Andeweg, B. (2002). Cenozoic tectonic evolution of the Iberian Peninsula: Effects and causes of changing stress fields, Vrije Universiteit. Artyushkov, E. (1973). Stresses in the lithosphere caused by crustal thickness inhomogeneities. Journal of Geophysical Research, 78, 7675–7708. https://doi.org/10.1029/JB078i032p07675 Basili, R., Kastelic, V., Demircioglu, M., Garcia Moreno, D., Nemser, E., Petricca, P., Sboras, S., Besana‐Ostman, G., Cabral, J., & Camelbeeck, T. (2013). The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share‐edsf Becker, T. W., Lowry, A. R., Faccenna, C., Schmandt, B., Borsa, A., & Yu, C. (2015). Western US intermountain seismicity caused by changes in upper mantle flow. Nature, 524(7566), 458–461. https://doi.org/10.1038/nature14867 Becker, T. W., & O'Connell, R. J. (2001). Predicting plate velocities with mantle circulation models. Geochemistry, Geophysics, Geosystems, 2, 1060–1054. https://doi.org/10.1029/2001GC000171 Bird, P. (1989). New finite element techniques for modeling deformation histories of continents with stratified temperature‐dependent rheology. Journal of Geophysical Research, 94, 3967–3990. https://doi.org/10.1029/JB094iB04p03967 Bird, P. (1999). Thin‐plate and thin‐shell finite‐element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosciences, 25(4), 383–394. https://doi.org/10.1016/S0098‐3004(98)00142‐3 Bird, P., Liu, Z., & Rucker, W. K. (2008). Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis. Journal of Geophysical Research, 113, B11406. https://doi.org/10.1029/2007JB005460 Bird, P., & Piper, K. (1980). Plane‐stress finite‐element models of tectonic flow in southern California. Physics of the Earth and Planetary Interiors, 21(2–3), 158–175. https://doi.org/10.1016/0031‐9201(80)90067‐9 Boehm, J., Kouba, J., & Schuh, H. (2009). Forecast Vienna Mapping Functions 1 for real‐time analysis of space geodetic observations. Journal of Geodesy, 83(5), 397–401. https://doi.org/10.1007/s00190‐008‐0216‐y Bos, M., Fernandes, R., Williams, S., & Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4), 351–360. https://doi.org/10.1007/s00190‐012‐0605‐0 Bousquet, J. (1979). Quaternary strike‐slip faults in southeastern Spain. Tectonophysics, 52(1–4), 277–286. https://doi.org/10.1016/0040‐1951(79)90232‐4 Buforn, E., De Galdeano, C. S., & Udías, A. (1995). Seismotectonics of the Ibero‐Maghrebian region. Tectonophysics, 248(3–4), 247–261. https://doi.org/10.1016/0040‐1951(94)00276‐F Cabral, J. (1989). An example of intraplate neotectonic activity, Vilariça basin, Northeast Portugal. Tectonics, 8, 285–303. https://doi.org/10.1029/TC008i002p00285 Cabral, J. (2012). Neotectonics of mainland Portugal: State of the art and future perspectives/Neotectónica de Portugal peninsular—Estado de la cuestión y perspectivas de futuro. Journal of Iberian Geology, 38(1), 71–84. Camelbeeck, T., de Viron, O., Van Camp, M., & Kusters, D. (2013). Local stress sources in Western Europe lithosphere from geoid anomalies. Lithosphere, 5(3), 235–246. https://doi.org/10.1130/L238.1 Cannavò, F., & Palano, M. (2016). Defining geodetic reference frame using Matlab®: PlatEMotion 2.0. Pure and Applied Geophysics, 173(3), 937–944. https://doi.org/10.1007/s00024‐015‐1112‐z Carafa, M., & Barba, S. (2011). Determining rheology from deformation data: The case of central Italy. Tectonics, 30, TC2003. https://doi.org/10.1029/2010TC002680 Carafa, M., & Barba, S. (2013). The stress field in Europe: Optimal orientations with confidence limits. Geophysical Journal International, 193(2), 531–548. https://doi.org/10.1093/gji/ggt024 Carafa, M., Barba, S., & Bird, P. (2015). Neotectonics and long‐term seismicity in Europe and the Mediterranean region. Journal of Geophysical Research: Solid Earth, 120, 5311–5342. https://doi.org/10.1002/2014JB011751 Carafa, M. M., Tarabusi, G., & Kastelic, V. (2015). SHINE: Web application for determining the horizontal stress orientation. Computers & Geosciences, 74, 39–49. https://doi.org/10.1016/j.cageo.2014.10.001 Casas‐Sainz, A., & De Vicente, G. (2009). On the tectonic origin of Iberian topography. Tectonophysics, 474(1‐2), 214–235. https://doi.org/10.1016/j.tecto.2009.01.030 Chevrot, S., Villaseñor, A., Sylvander, M., Benahmed, S., Beucler, E., Cougoulat, G., Delmas, P., de Saint Blanquat, M., Diaz, J., Gallart, J., Grimaud, F., Lagabrielle, Y., Manatschal, G., Mocquet, A., Pauchet, H., Paul, A., Péquegnat, C., Quillard, O., Roussel, S., Ruiz, M., & Wolyniec, D. (2014). High‐resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments. Journal of Geophysical Research: Solid Earth, 119, 6399–6420. https://doi.org/10.1002/2014JB010953 Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P., Garcia‐Castellanos, D., DeVicente, G., & Vegas, R. (2002). Lithospheric folding in Iberia. Tectonics, 21(5), 1041. https://doi.org/10.1029/2001TC901031 Cloetingh, S., Thybo, H., & Faccenna, C. (2009). TOPO‐EUROPE: Studying continental topography and Deep Earth–Surface processes in 4D. Tectonophysics, 474(1–2). 4–32. https://doi.org/10.1016/j.tecto.2009.04.015 Coblentz, D. D., & Sandiford, M. (1994). Tectonic stresses in the African plate: Constraints on the ambient lithospheric stress state. Geology, 22(9), 831–834. https://doi.org/10.1130/0091‐7613(1994)022<0831:TSITAP>2.3.CO;2 Cunha, T., Matias, L., Terrinha, P., Negredo, A., Rosas, F., Fernandes, R., & Pinheiro, L. (2012). Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: A reassessment including recent structural, seismic and geodetic data. Geophysical Journal International, 188(3), 850–872. https://doi.org/10.1111/j.1365‐246X.2011.05328.x Custódio, S., Lima, V., Vales, D., Cesca, S., & Carrilho, F. (2016). Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores–western Mediterranean region. Tectonophysics, 676, 70–89. https://doi.org/10.1016/j.tecto.2016.03.013 DeLarouzière, F., Bolze, J., Bordet, P., Hernandez, J., Montenat, C., & d'Estevou, P. O. (1988). The Betic segment of the lithospheric Trans‐Alboran shear zone during the Late Miocene. Tectonophysics, 152(1–2), 41–52. https://doi.org/10.1016/0040‐1951(88)90028‐5 De Vicente, G., & Vegas, R. (2009). Large‐scale distributed deformation controlled topography along the western Africa–Eurasia limit: Tectonic constraints. Tectonophysics, 474(1‐2), 124–143. https://doi.org/10.1016/j.tecto.2008.11.026 DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365‐246X.2009.04491.x Duarte, J. C., Rosas, F. M., Terrinha, P., Gutscher, M.‐A., Malavieille, J., Silva, S., & Matias, L. (2011). Thrust–wrench interference tectonics in the Gulf of Cadiz (Africa–Iberia plate boundary in the north‐East Atlantic): Insights from analog models. Marine Geology, 289(1‐4), 135–149. https://doi.org/10.1016/j.margeo.2011.09.014 Duarte, J. C., Rosas, F. M., Terrinha, P., Schellart, W. P., Boutelier, D., Gutscher, M.‐A., & Ribeiro, A. (2013). Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology, 41(8), 839–842. https://doi.org/10.1130/G34100.1 Faccenna, C., & Becker, T. W. (2010). Shaping mobile belts by small‐scale convection. Nature, 465(7298), 602–605. https://doi.org/10.1038/nature09064 Farolfi, G., & Del Ventisette, C. (2017). Strain rates in the Alpine Mediterranean region: Insights from advanced techniques of data processing. GPS Solutions, 21(3), 1027–1036. https://doi.org/10.1007/s10291‐016‐0588‐z Fernandes, R., Ambrosius, B., Noomen, R., Bastos, L., Wortel, M., Spakman, W., & Govers, R. (2003). The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophysical Research Letters, 30(16), 1828. https://doi.org/10.1029/2003GL017089 Fleitout, L., & Froidevaux, C. (1982). Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics, 1, 21–56. https://doi.org/10.1029/TC001i001p00021 Flesch, L. M., Holt, W. E., Haines, A. J., Wen, L., & Shen‐Tu, B. (2007). The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions. Geophysical Journal International, 169(3), 866–896. https://doi.org/10.1111/j.1365‐246X.2007.03274.x Flesch, L. M., & Kreemer, C. (2010). Gravitational potential energy and regional stress and strain rate fields for continental plateaus: Examples from the central Andes and Colorado Plateau. Tectonophysics, 482(1–4), 182–192. https://doi.org/10.1016/j.tecto.2009.07.014 García‐Mayordomo, J. (2012). The Quaternary Active Faults Database of Iberia (QAFI v. 2.0)/La Base de Datos de Fallas Activas en el Cuaternario de Iberia (QAFI v. 2.0). Journal of Iberian Geology, 38(1), 285–302. Genti, M., Chery, J., Vernant, P., & Rigo, A. (2016). Impact of gravity forces and topography denudation on normal faulting in Central–Western Pyrenees: Insights from 2D numerical models. Comptes Rendus Geoscience, 348(3‐4), 173–183. https://doi.org/10.1016/j.crte.2015.08.004 Ghosh, A., Becker, T., & Humphreys, E. (2013). Dynamics of the North American continent. Geophysical Journal International, 194(2), 651–669. https://doi.org/10.1093/gji/ggt151 Ghosh, A., Holt, W., & Wen, L. (2013). Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. Journal of Geophysical Research: Solid Earth, 118, 346–368. https://doi.org/10.1029/2012JB009516 Ghosh, A., & Holt, W. E. (2012). Plate motions and stresses from global dynamic models. Science, 335(6070), 838–843. https://doi.org/10.1126/science.1214209 Ghosh, A., Holt, W. E., Flesch, L. M., & Haines, A. J. (2006). Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34(5), 321–324. https://doi.org/10.1130/G22071.1 Gölke, M., & Coblentz, D. (1996). Origins of the European regional stress field. Tectonophysics, 266(1–4), 11–24. https://doi.org/10.1016/S0040‐1951(96)00180‐1 Gutscher, M.‐A., Dominguez, S., Westbrook, G. K., LeRoy, P., Rosas, F., Duarte, J., Terrinha, P., Miranda, J., Graindorge, D., & Gailler, A. (2012). The Gibraltar subduction: A decade of new geophysical data. Tectonophysics, 574, 72–91. Hackl, M., Malservisi, R., & Wdowinski, S. (2009). Strain rate patterns from dense GPS networks. Natural Hazards and Earth System Sciences, 9(4), 1177–1187. https://doi.org/10.5194/nhess‐9‐1177‐2009 Heidbach, O., M. Rajabi, M. Ziegler, & K. Reiter (2016). The World Stress Map database release 2016—Global crustal stress pattern vs. absolute plate motion, edited, p. 4861, GFZ data services. Hodges, K., Hurtado, J., & Whipple, K. (2001). Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 20, 799–809. https://doi.org/10.1029/2001TC001281 Jones, C. H., Unruh, J. R., & Sonder, L. J. (1996). The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 381(6577), 37–41. https://doi.org/10.1038/381037a0 Kagan, Y. (1991). 3‐D rotation of double‐couple earthquake sources. Geophysical Journal International, 106(3), 709–716. https://doi.org/10.1111/j.1365‐246X.1991.tb06343.x Kong, X., & Bird, P. (1995). SHELLS: A thin‐shell program for modeling neotectonics of regional or global lithosphere with faults. Journal of Geophysical Research, 100, 22,129–22,131. https://doi.org/10.1029/95JB02435 Koulali, A., Ouazar, D., Tahayt, A., King, R., Vernant, P., Reilinger, R., McClusky, S., Mourabit, T., Davila, J. M., & Amraoui, N. (2011). New GPS constraints on active deformation along the Africa–Iberia plate boundary. Earth and Planetary Science Letters, 308(1‐2), 211–217. https://doi.org/10.1016/j.epsl.2011.05.048 Leblanc, D., & Olivier, P. (1984). Role of strike‐slip faults in the Betic‐Rifian orogeny. Tectonophysics, 101(3–4), 345–355. https://doi.org/10.1016/0040‐1951(84)90120‐3 Levandowski, W., Zellman, M., & Briggs, R. (2017). Gravitational body forces focus North American intraplate earthquakes. Nature Communications, 8. https://doi.org/10.1038/ncomms14314 Lichten, S., Bar‐Sever, Y., Bertiger, E., Heflin, M., Hurst, K., Muellerschoen, R., Wu, S., Yunck, T., & Zumberge, J. (2006). GIPSY‐OASIS II: A high precision GPS data processing system and general orbit analysis tool. Technology, 2(6), 2–4. Lithgow‐Bertelloni, C., & Richards, M. A. (1998). The dynamics of Cenozoic and Mesozoic plate motions. Reviews of Geophysics, 36, 27–78. https://doi.org/10.1029/97RG02282 Lonergan, L., & White, N. (1997). Origin of the Betic‐Rif mountain belt. Tectonics, 16, 504–522. https://doi.org/10.1029/96TC03937 Mancilla, F. d. L., Booth‐Rea, G., Stich, D., Pérez‐Peña, J. V., Morales, J., Azañón, J. M., Martin, R., & Giaconia, F. (2015). Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics, 663, 225–237. https://doi.org/10.1016/j.tecto.2015.06.028 Mancilla, F. d. L., Stich, D., Berrocoso, M., Martín, R., Morales, J., Fernandez‐Ros, A., Páez, R., & Pérez‐Peña, A. (2013). Delamination in the Betic Range: Deep structure, seismicity, and GPS motion. Geology, 41(3), 307–310. https://doi.org/10.1130/G33733.1 Martín‐González, F., Antón, L., Insua, J., DeVicente, G., Martínez‐Díaz, J., Muñoz‐Martín, A., Heredia, N., & Olaiz, A. (2012). Seismicity and potencially active faults in the northwest and central‐west Iberian Peninsula/Sismicidad y Fallas Potencialmente Activas en el Noroeste y Centro Oeste de la Península Ibérica. Journal of Iberian Geology, 38(1), 53. Molinari, I., & Morelli, A. (2011). EPcrust: A reference crustal model for the European Plate. Geophysical Journal International, 185(1), 352–364. https://doi.org/10.1111/j.1365‐246X.2011.04940.x Molnar, P., England, P. C., & Jones, C. H. (2015). Mantle dynamics, isostasy, and the support of high terrain. Journal of Geophysical Research: Solid Earth, 120, 1932–1957. https://doi.org/10.1002/2014JB011724 Molnar, P., & Lyon‐Caen, H. (1988). Some simple physical aspects of the support, structure, and evolution of mountain belts. Geological Society of America Special Papers, 218, 179–208. https://doi.org/10.1130/SPE218‐p179 Moucha, R., & Forte, A. M. (2011). Changes in African topography driven by mantle convection. Nature Geoscience, 4(10), 707–712. https://doi.org/10.1038/ngeo1235 Neres, M., Carafa, M., Fernandes, R., Matias, L., Duarte, J., Barba, S., & Terrinha, P. (2016). Lithospheric deformation in the Africa‐Iberia plate boundary: Improved neotectonic modeling testing a basal‐driven Alboran plate. Journal of Geophysical Research: Solid Earth, 121, 6566–6596. https://doi.org/10.1002/2016JB013012 Neves, M. C., Fernandes, R. M., & Adam, C. (2014). Refined models of gravitational potential energy compared with stress and strain rate patterns in Iberia. Journal of Geodynamics, 81, 91–104. https://doi.org/10.1016/j.jog.2014.07.010 Palano, M., González, P. J., & Fernández, J. (2013). Strain and stress fields along the Gibraltar Orogenic Arc: Constraints on active geodynamics. Gondwana Research, 23(3), 1071–1088. https://doi.org/10.1016/j.gr.2012.05.021 Palano, M., González, P. J., & Fernández, J. (2015). The diffuse plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters, 430, 439–447. https://doi.org/10.1016/j.epsl.2015.08.040 Palomeras, I., Villaseñor, A., Thurner, S., Levander, A., Gallart, J., & Harnafi, M. (2017). Lithospheric structure of Iberia and Morocco using finite‐frequency Rayleigh wave tomography from earthquakes and seismic ambient noise. Geochemistry, Geophysics, Geosystems, 18, 1824–1840. https://doi.org/10.1002/2016GC006657 Pascal, C. (2006). On the role of heat flow, lithosphere thickness and lithosphere density on gravitational potential stresses. Tectonophysics, 425(1‐4), 83–99. https://doi.org/10.1016/j.tecto.2006.07.012 Pascal, C., & Cloetingh, S. A. (2009). Gravitational potential stresses and stress field of passive continental margins: Insights from the south‐Norway shelf. Earth and Planetary Science Letters, 277(3‐4), 464–473. https://doi.org/10.1016/j.epsl.2008.11.014 Ramos, A., Fernández, O., Terrinha, P., & Muñoz, J. A. (2017). Neogene to recent contraction and basin inversion along the Nubia‐Iberia boundary in SW Iberia. Tectonics, 36, 257–286. https://doi.org/10.1002/2016TC004262 Ribeiro, A., Cabral, J., Baptista, R., & Matias, L. (1996). Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia. Tectonics, 15, 641–659. https://doi.org/10.1029/95TC03683 Rigo, A., Vernant, P., Feigl, K., Goula, X., Khazaradze, G., Talaya, J., Morel, L., Nicolas, J., Baize, S., & Chery, J. (2015). Present‐day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011. Geophysical Journal International, 201(2), 947–964. https://doi.org/10.1093/gji/ggv052 Ritsema, J., Deuss, A., VanHeijst, H., & Woodhouse, J. (2011). S40RTS: A degree‐40 shear‐velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal‐mode splitting function measurements. Geophysical Journal International, 184(3), 1223–1236. https://doi.org/10.1111/j.1365‐246X.2010.04884.x Rockwell, T., Fonseca, J., Madden, C., Dawson, T., Owen, L. A., Vilanova, S., & Figueiredo, P. (2009). Palaeoseismology of the Vilariça Segment of the Manteigas‐Bragança Fault in northeastern Portugal. Geological Society, London, Special Publications, 316(1), 237–258. https://doi.org/10.1144/sp316.15 Rosenbaum, G., Lister, G. S., & Duboz, C. (2002). Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359(1‐2), 117–129. https://doi.org/10.1016/S0040‐1951(02)00442‐0 Royden, L. H. (1993). Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12, 629–638. https://doi.org/10.1029/92TC02641 Rubey, M., Brune, S., Heine, C., Davies, D. R., Williams, S. E., & Müller, R. D. (2017). Global patterns in Earth's dynamic topography since the Jurassic: The role of subducted slabs. Solid Earth, 8(5), 899–919. https://doi.org/10.5194/se‐8‐899‐2017 Sallarès, V., Martínez‐Loriente, S., Prada, M., Gràcia, E., Ranero, C., Gutscher, M.‐A., Bartolome, R., Gailler, A., Dañobeitia, J. J., & Zitellini, N. (2013). Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth and Planetary Science Letters, 365, 120–131. https://doi.org/10.1016/j.epsl.2013.01.021 Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M., & Dilssner, F. (2016). Absolute IGS antenna phase center model igs08. atx: Status and potential improvements. Journal of Geodesy, 90(4), 343–364. https://doi.org/10.1007/s00190‐015‐0876‐3 Silva, S., Terrinha, P., Matias, L., Duarte, J. C., Roque, C., Ranero, C. R., Geissler, W. H., & Zitellini, N. (2017). Micro‐seismicity in the Gulf of Cadiz: Is there a link between micro‐seismicity, high magnitude earthquakes and active faults? Tectonophysics, 717, 226–241. https://doi.org/10.1016/j.tecto.2017.07.026 Smith, W., & Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics, 55(3), 293–305. https://doi.org/10.1190/1.1442837 Spakman, W., & Wortel, R. (2004). A tomographic view on western Mediterranean geodynamics. In The TRANSMED Atlas: The Mediterranean region from crust to mantle, (pp. 31–52). https://doi.org/10.1007/978‐3‐642‐18919‐7_2 Stamps, D. S., Flesch, L. M., Calais, E., & Ghosh, A. (2014). Current kinematics and dynamics of Africa and the East African Rift System. Journal of Geophysical Research: Solid Earth, 119, 5161–5186. https://doi.org/10.1002/2013JB010717 Stamps, D. S., Iaffaldano, G., & Calais, E. (2015). Role of mantle flow in Nubia‐Somalia plate divergence. Geophysical Research Letters, 42, 290–296. https://doi.org/10.1002/2014GL062515 Stich, D., Martín, R., & Morales, J. (2010). Moment tensor inversion for Iberia–Maghreb earthquakes 2005–2008. Tectonophysics, 483(3‐4), 390–398. https://doi.org/10.1016/j.tecto.2009.11.006 Stich, D., Serpelloni, E., de Lis Mancilla, F., & Morales, J. (2006). Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations. Tectonophysics, 426(3‐4), 295–317. https://doi.org/10.1016/j.tecto.2006.08.004 Terrinha, P., Matias, L., Vicente, J., Duarte, J., Luís, J., Pinheiro, L., Lourenço, N., Diez, S., Rosas, F., & Magalhães, V. (2009). Morphotectonics and strain partitioning at the Iberia–Africa plate boundary from multibeam and seismic reflection data. Marine Geology, 267(3‐4), 156–174. https://doi.org/10.1016/j.margeo.2009.09.012 Terrinha, P., Pinheiro, L. M., Henriet, J.‐P., Matias, L., Ivanov, M., Monteiro, J. H., Akhmetzhanov, A., Volkonskaya, A., Cunha, T., & Shaskin, P. (2003). Tsunamigenic‐seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Marine Geology, 195(1‐4), 55–73. https://doi.org/10.1016/S0025‐3227(02)00682‐5 Vautard, R., Yiou, P., & Ghil, M. (1992). Singular‐spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1‐4), 95–126. https://doi.org/10.1016/0167‐2789(92)90103‐T Villaseñor, A., Chevrot, S., Harnafi, M., Gallart, J., Pazos, A., Serrano, I., Córdoba, D., Pulgar, J. A., & Ibarra, P. (2015). Subduction and volcanism in the Iberia–North Africa collision zone from tomographic images of the upper mantle. Tectonophysics, 663, 238–249. https://doi.org/10.1016/j.tecto.2015.08.042 Warners‐Ruckstuhl, K. N., Govers, R., & Wortel, R. (2013). Tethyan collision forces and the stress field of the Eurasian Plate. Geophysical Journal International, 195(1), 1–15. https://doi.org/10.1093/gji/ggt219 Wessel, P., & Bercovici, D. (1998). Interpolation with splines in tension: A Green's function approach. Mathematical Geology, 30(1), 77–93. https://doi.org/10.1023/A:1021713421882 Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001 Zitellini, N., Gràcia, E., Matias, L., Terrinha, P., Abreu, M., DeAlteriis, G., Henriet, J., Dañobeitia, J., Masson, D., & Mulder, T. (2009). The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters, 280(1‐4), 13–50. https://doi.org/10.1016/j.epsl.2008.12.005. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, 5005–5017. https://doi.org/10.1029/96JB03860.en
dc.description.obiettivoSpecifico1T. Struttura della Terraen
dc.description.journalTypeJCR Journalen
dc.contributor.authorNeres, Men
dc.contributor.authorNeves, M. C.en
dc.contributor.authorCustódio, S.en
dc.contributor.authorPalano, Mimmoen
dc.contributor.authorFernandes, R.en
dc.contributor.authorMatias, L.en
dc.contributor.authorCarafa, Michele M. C.en
dc.contributor.authorTerrinha, P.en
dc.contributor.departmentInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, , Lisbon, Portugalen
dc.contributor.departmentInstituto Dom Luiz, Universidade do Algarve, , Faro, Portugalen
dc.contributor.departmentInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, , Lisbon, Portugalen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentInstituto Dom Luiz, Universidade da Beira Interior, Covilhã, Portugalen
dc.contributor.departmentInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, , Lisbon, Portugalen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, , Lisbon, Portugalen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, , Lisbon, Portugal-
crisitem.author.deptInstituto Dom Luiz, Universidade do Algarve, , Faro, Portugal-
crisitem.author.deptUniversidade de Lisboa, Instituto Dom Luiz, Faculdade de Ciencias, Lisbon, Portuga-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptInstituto Dom Luiz, Universidade da Beira Interior, Covilhã, Portugal-
crisitem.author.deptInstituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Portugal-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptLaboratório Nacional de Energia e Geologia, I.P., Portugal-
crisitem.author.orcid0000-0001-5726-3467-
crisitem.author.orcid0000-0001-7457-4179-
crisitem.author.orcid0000-0001-7254-7855-
crisitem.author.orcid0000-0002-8086-4874-
crisitem.author.orcid0000-0001-5463-463X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2018_Neres et al [GPE Iberia] JGR.pdfPubblished Paper6.17 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 5

5
checked on Feb 7, 2021

Page view(s)

324
checked on Apr 24, 2024

Download(s)

71
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric