Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/12201
Authors: Musicò, Elvira* 
Cesaroni, Claudio* 
Spogli, Luca* 
Merryman Boncori, John Peter* 
De Franceschi, Giorgiana* 
Seu, Roberto* 
Title: The Total Electron Content From InSAR and GNSS: A Midlatitude Study
Issue Date: 2018
Series/Report no.: 5/11 (2018)
DOI: 10.1109/JSTARS.2018.2812305
URI: http://hdl.handle.net/2122/12201
Abstract: The total electron content (TEC) measured from the interferometric synthetic aperture radar (InSAR) and froma dense network of global navigation satellite system (GNSS) receivers are used to assess the capability of InSAR to retrieve ionospheric information, when the tropospheric contribution to the interferometric phase is reasonably negligible.With this aim, we select three nighttime case studies over Italy and investigate the correlation between TEC from advanced land observing satellite-phased array type L-band synthetic aperture radar (ALOS-PALSAR) and from the Rete Integrata Nazionale GPS (RING) network, the latter considered as the reference true ionospheric TEC. To retrieve the TEC variability from ALOS-PALSAR, we first investigate the correlation between the integral of the azimuth shifts and the interferometric phase in the absence of ground motions (e.g., earthquakes) and/or heavy rain events. If correlation exists (as in two out of three case studies under investigation), we can assume the tropospheric contribution to the interferometric phase as negligible and theTEC variability from L-band InSAR can be retrieved. For these two case studies, the comparison between the TEC from the InSAR images and from the RING network is quite encouraging as the correlation coefficient is R ∼ 0.67 in the first case and R ∼ 0.83 in the second case. This result highlights the potential to combine InSAR and GNSS experimental measurements to investigate small-scale spatial variability of TEC, in particular over regions scarcely covered by ground-based GNSS receivers.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
2018_Musico_et_al_IONO-SAR_JSTARS.pdf879.73 kBAdobe PDFView/Open
Show full item record

Page view(s)

3
checked on Feb 17, 2019

Download(s)

1
checked on Feb 17, 2019

Google ScholarTM

Check

Altmetric