Please use this identifier to cite or link to this item:
Authors: Marchese, Francesco* 
Neri, Marco* 
Falconieri, Alfredo* 
Lacava, Teodosio* 
Mazzeo, Giuseppe* 
Pergola, Nicola* 
Tramutoli, Valerio* 
Title: The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016
Journal: Remote Sensing 
Series/Report no.: /10(2018)
Issue Date: 4-Dec-2018
DOI: 10.3390/rs10121948
Keywords: Mt. Etna
multi-platform satellite observations
Subject Classification04.08. Volcanology 
Abstract: In May 2016, three powerful paroxysmal events, mild Strombolian activity, and lava emissions took place at the summit crater area of Mt. Etna (Sicily, Italy). During, and immediately after the eruption, part of the North-East crater (NEC) collapsed, while extensive subsidence affected the Voragine crater (VOR). Since the end of the May eruptions, a diffuse fumarolic activity occurred from a fracture system that cuts the entire summit area. Starting from 7 August, a small vent (of ~20–30min diameter) opened up within the VOR crater, emitting high-temperature gases and producing volcanic glow which was visible at night. We investigated those volcanic phenomena from space, exploiting the information provided by the satellite-based system developed at the Institute of Methodologies for Environmental Analysis (IMAA), which monitors Italian volcanoes in near-real time by means of the RSTVOLC (Robust Satellite Techniques–volcanoes) algorithm. Results, achieved integrating Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) observations, showed that, despite some issues (e.g., in some cases, clouds masking the underlying hot surfaces), RSTVOLC provided additional information regarding Mt. Etna activity. In particular, results indicated that the Strombolian eruption of 21 May lasted longer than reported by field observations or that a short-lived event occurred in the late afternoon of the same day. Moreover, the outcomes of this study showed that the intensity of fumarolic emissions changed before 7 August, as a possible preparatory phase of the hot degassing activity occurring at VOR. In particular, the radiant flux retrieved from MODIS data decreased from 30 MW on 4 July to an average value of about 7.5 MW in the following weeks, increasing up to 18 MW a few days before the opening of a new degassing vent. These outcomes, in accordance with information provided by Sentinel-2 MSI (Multispectral Instrument) and Landsat 8-OLI (Operational Land Imager) data, confirm that satellite observations may also contribute greatly to the monitoring of active volcanoes in areas where efficient traditional surveillance systems exist.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
2018 Marchese et al remotesensing-10-01948 2018.pdf7.26 MBAdobe PDFView/Open
Show full item record

Citations 10

checked on Feb 10, 2021

Page view(s)

checked on Sep 29, 2022


checked on Sep 29, 2022

Google ScholarTM