Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11986
DC FieldValueLanguage
dc.date.accessioned2019-01-02T07:39:24Zen
dc.date.available2019-01-02T07:39:24Zen
dc.date.issued2018-10-27en
dc.identifier.urihttp://hdl.handle.net/2122/11986en
dc.description.abstractThe majority of Zhang et al. critical comments concern our method to retrieve aeronomicparameters from ionosondefoF1observations. The main idea of the method was described by Mikhailovand Perrone (2016, https://doi.org/10.1002/2016JA022716), but it is seen that an additional clarification isrequired. The method has been slightly changed to meet numerous comments of referees, and itsdescription is given here. The comments by Zhang et al. are analyzed and answereden
dc.language.isoEnglishen
dc.relation.ispartofJournal Geophysical Research-Space Physicsen
dc.relation.ispartofseries10/123(2018)en
dc.subjectThermosphereen
dc.subjectIonosphereen
dc.titleReply to Comment by Zhang et al. on the Paper “Long‐Term Variations of Exospheric Temperature Inferred From foF1 Observations: A Comparison to ISR Ti Trend Estimates” by Perrone and Mikhailoven
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber8895–8907en
dc.identifier.doi10.1029/2017JA024948en
dc.relation.referencesAksnes, A., Eastes, R., Budzien, S., & Dymond, K. (2007). Dependence of neutral temperatures in the lower thermosphere on geomagnetic activity. Journal of Geophysical Research,112, A06302. https://doi.org/10.1029/2006JA012214 Banks, P. M., & Kockarts, G. (1973).Aeronomy. New York, London: Academic Press. Bates, D. R. (1959). Some problems concerning the terrestrial atmosphere above the 100 km level.Proceedings of the Royal Society LondonSer. A.,253(1275), 451–462. https://doi.org/10.1098/rspa.1959.0207 Beynon, W. J. G., & Williams, P. J. S. (1978).Incoherent scatter of radio waves from the ionosphere,Rep. Prog. Phys., (Vol. 41). Penglais,Aberystwyth SY23 3B2, UK: Department of Physics, University College of Wales. Bruinsma, S. (2015). The DTM-2013 thermosphere model.Journal of Space Weather and Space Climate,5, A1. https://doi.org/10.1051/swsc/2015001 Buonsanto, M. J., & Pohlman, L. M. (1998). Climatology of neutral exospheric temperature above Millstone Hill.Journal of GeophysicalResearch,103(A10), 23,381–23,392. https://doi.org/10.1029/98JA01919 Buonsanto, M. J., & Witasse, O. G. (1999). An updated climatology of thermospheric neutral winds and Fregion ion drifts above Millstone Hill. Journal of Geophysical Research,104(A11), 24,675–24,687. Donaldson, J. K., Wellman, T. J., & Oliver, W. L. (2010). Long-term change in thermospheric temperature above Saint Santin.Journal of Geophysical Research,115, A11305. https://doi.org/10.1029/2010JA015346 Emmert, J. T. (2015). Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. Journal of Geophysical Research: Space Physics,120, 2940–2950. https://doi.org/10.1002/2015JA021047 Goncharenko, L. P., & Salah, J. E. (1998). Climatology and variability of the semidiurnal tide in the lower thermosphere over Millstone Hill.Journal of Geophysical Research,103, 20,715–20,726. Hedin, A. E. (1987). MSIS-86 thermospheric model.Journal of Geophysical Research,92, 4649–4662. Himmelblau, D. M. (1972).Applied nonlinear programming. McGraw-Hill Book Company. Holt, J. M., & Zhang, S. R. (2008). Long-term temperature trends in the ionosphere above Millstone Hill.Geophysical Research Letters,35,L05813. https://doi.org/10.1029/2007GL031148 Ivanov-Kholodny, G. S., & Nikoljsky, G. M. (1969).The Sun and the ionosphere(p. 455). Moscow: Nauka. (in Russian) Litvin, A., Oliver, W. L., Picone, J. M., & Buonsanto, M. J. (2000). The upper atmosphere during June 5–11, 1991.Journal of Geophysical Research,105(A6), 12,789–12,796. Mikhailov, A. V. (2008). Ionospheric F1 layer long-term trends and the geomagnetic control concept. Annales Geophysicae,26, 3793–3803. Mikhailov, A. V., & Lilensten, J. (2004). A revised method to extract thermospheric parameters from incoherent scatter observations. Annals of Geophysics,47(N2/3), 985–1008. Mikhailov, A. V., & Perrone, L. (2016). Geomagnetic control of the midlatitude daytime foF1 and foF2 long-term variations: Physical interpre-tation using European observations. Journal of Geophysical Research: Space Physics,121, 7193–7203. https://doi.org/10.1002/2016JA022716 Mikhailov, A. V., & Perrone, L. (2018). Interminimum foF1 differences and their physical interpretation.Journal of Geophysical Research: SpacePhysics,123, 768–780. https://doi.org/10.1002/2017JA024831 Mikhailov, A. V., Perrone, L., & Nusinov, A. A. (2017). A mechanism of midlatitude noontime foE long-term variations inferred from European observations. Journal of Geophysical Research: Space Physics,122, 4466–4473. https://doi.org/10.1002/2017JA02390910.1029/2017JA025039 Nusinov, A. A. (1992). Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission., Proc. Workshop on SolarElectromagnetic Radiation for Solar Cycle 22, Boulder, Co., July 1992, Ed. R.F. Donnely, NOAA ERL. Boulder, Co., USA, 354–359. Oliver, W. L. (1979). Incoherent scatter radar studies of the daytime middle thermosphere. Annales Geophysicae,35, 121–139. Oliver, W. L., Zhang, S.-R., & Goncharenko, L. P. (2013). Is thermospheric global cooling caused by gravity waves?Journal of GeophysicalResearch: Space Physics,118, 3898–3908. https://doi.org/10.1002/jgra.50370 Perrone, L., Mikhailov, A., Cesaroni, C., Alfonsi, L., De Santis, A., Pezzopane, M., & Scotto, C. (2017). Long-term variations of the upper atmo-sphere parameters on Rome ionosonde observations and their interpretation. Journal of Space Weather and Space Climate,7, A21. https://doi.org/10.1051/swsc/2017021 Perrone, L., & Mikhailov, A. V. (2016). Geomagnetic control of the midlatitude foF1 and foF2 long-term variations: Recent observations in Europe.Journal of Geophysical Research: Space Physics,121, 7183–7192. https://doi.org/10.1002/2016JA022715 Perrone, L., & Mikhailov, A. V. (2017). Long-term variations of exospheric temperature inferred from foF1 observations: A comparison to ISR Ti trend estimates. Journal of Geophysical Research: Space Physics,122, 8883–8892. https://doi.org/10.1002/2017JA024193 Picone, J.M., Hedin, A.E., Drob, D.P, &, Aikin, A.C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues.Journal of Geophysical Research,107A12, 1468. https://doi.org/10.1029/2002JA009430 Ratcliffe, J. A. (1972).An introduction to the ionosphere and magnetosphere(p. 361). New York: Cambridge. University Press.Richards, P. G. (2011). Reexamination of ionospheric photochemistry. Journal of Geophysical Research,116, A08307. https://doi.org/10.1029/2011JA016613 Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). EUVAC: A solar EUVflux model for aeronomic calculations.Journal of Geophysical Research,99, 8981–8992. Richards, P. G., & Torr, D. G. (1988). Ratios of photoelectron to EUV ionization rates for aeronomic studies. Journal of Geophysical Research,93,4060–4066. Rishbeth, H. (1990). A greenhouse effect in the ionosphere?Planetary and Space Science,38, 945–948. Rishbeth, H. (1997). Long-term changes in the ionosphere.Advances in Space Research,20, 2149–2155. Rishbeth, H., & Garriott, O. K. (1969).Introduction to ionospheric physics(p. 331). New York and London: Academic Press. Rishbeth, H., & Roble, R. G. (1992). Cooling of the upper atmosphere by enhanced greenhouse gases—Modelling of thermospheric andionospheric effects.Planetary and Space Science,40, 1011–1026. Solomon, S. C., Liu, H.-L., Marsh, D. R., McInerney, J. M., Qian, L., & Vitt, F. M. (2018). Whole atmosphere simulation of anthropogenic climate change.Geophysical Research Letters,45, 1567–1576. https://doi.org/10.1002/2017GL076950 Taieb, C., Scialom, G., & Kockarts, G. (1978). A dynamical effect in the ionospheric F1 Layer. Planetary and Space Science,26(11), 1007–1016. Torr, M. R., Torr, D. G., Ong, R. A., & Hinteregger, H. E. (1979). Ionization frequencies for major thermospheric constituents as a function of solar cycle 21. Geophysical Research Letters,6, 771–774. Wand, R. H. (1983a). Lower thermospheric structure from Millstone Hill Incoherent Scatter Radar Measurements 1. Daily mean temperature.Journal of Geophysical Research,88(A11), 7201–7209. Wand, R. H. (1983b). Lower thermospheric structure from Millstone Hill Incoherent Scatter Radar Measurements 2. Semidiurnal temperature component. Journal of Geophysical Research,88(A11), 7211–7224. Wrenn, G. L. (1987). Time-weighted accumulations ap(τ) and Kp(τ).Journal of Geophysical Research,92, 10,125–10,129. Wrenn, G. L., Rodger, A. S., & Rishbeth, H. (1987). Geomagnetic storms in the Antarctic F-region. I. Diurnal and seasonal patterns for mainphase effects. Journal of Atmospheric and Solar - Terrestrial Physics,49, 901–913. Wu, Q., Ortland, D. A., Killeen, T. L., Roble, R. G., Hagan, M. E., Liu, H.-L., et al. (2008). Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 1. Migrating tide,Journal of Geophysical Research,113, A05308. https://doi.org/10.1029/2007JA012542 Zhang, S.-R., & Holt, J. M. (2013). Long-term ionospheric cooling: Dependency on local time, season, solar activity, and geomagnetic activity.Journal of Geophysical Research:,118, 3719–3730. https://doi.org/10.1002/jgra.50306 Zhang, S.-R., Holt, J. M., Erickson, P. J., Goncharenko, L. P., Nicolls, M. J., McCready, M., & Kelly, J. (2016). Ionospheric ion temperature climate and upper atmospheric long-term cooling.Journal of Geophysical Research: Space Physics,121, 8951–8968. https://doi.org/10.1002/2016JA022971 Zhang, S.-R., Holt J. M., & Kurdzo, J. (2011). Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency. Journal of Geophysical Research,116en
dc.description.obiettivoSpecifico2A. Fisica dell'alta atmosferaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorPerrone, Loredanaen
dc.contributor.authorMikhailov, Andreyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia-
crisitem.author.orcid0000-0003-4335-0345-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations 5

3
checked on Feb 10, 2021

Page view(s)

90
checked on Apr 17, 2024

Download(s)

34
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric