Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11980
DC FieldValueLanguage
dc.date.accessioned2018-11-29T13:22:39Zen
dc.date.available2018-11-29T13:22:39Zen
dc.date.issued2018-11-19en
dc.identifier.urihttp://hdl.handle.net/2122/11980en
dc.description.abstractThis work describes several important improvements made to the International Reference Ionosphere UPdate (IRIUP) method, and a careful validation of its performances under disturbed conditions. The IRI UP method has been improved developing an algorithm capable to properly filter wrongly autoscaled ionosonde data to be assimilated, avoiding the use of these in the assimilation process. Furthermore, the preliminary quality check used to choose the variogram model in the Universal Kriging method has been replaced with a new quality check routine (NQCR), based on statistical tests carried out using the variables Q 1 , Q 2 , and cR, built on variogram’s residuals. NQCR objectively identifies the best variogram model from which to get more reliable effective indices maps to be ingested in the IRI model to obtain updated foF2 and hmF2 maps. IRI UP has been applied on 30 different time intervals, between January 1, 2004, and December 31, 2016, characterized by moderate, strong, and severe geomagnetic conditions, over the European region. A statistical comparison between IRI UP and IRI at the truth sites located at Fairford (51.7°N, 1.5°W, UK) and San Vito (40.6°N, 17.8°E, Italy), for foF2 and hmF2, has been performed. From the statistical validation clearly emerges how IRI UP, for foF2, performs significantly better than IRI, for each of the 30 geomagnetic storms considered. Regarding hmF2, IRI UP performances are lower than those for foF2, although still better than IRI ones. In the light of the results achieved in this investigation, the IRI UP method represents an interesting approach to Space Weather forecast in the ionospheric domain.en
dc.language.isoEnglishen
dc.relation.ispartofEarth, Planets and Spaceen
dc.relation.ispartofseries/70(2018)en
dc.subjectIRI UPen
dc.subjectUniversal Krigingen
dc.subjectIonospheric data assimilationen
dc.subjectNowcasting mapsen
dc.titleImprovements and validation of the IRI UP method under moderate, strong, and severe geomagnetic stormsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberid 180en
dc.subject.INGV01.02. Ionosphereen
dc.identifier.doi10.1186/s40623-018-0952-zen
dc.relation.referencesAngling MJ, Khattatov B (2006) Comparative study of two assimila- tive models of the ionosphere. Radio Sci 41:RS5S20. https ://doi. org/10.1029/2005R S0033 72 Bibl K, Reinisch BW (1978) The universal digital ionosonde. Radio Sci 13:519–530. https ://doi.org/10.1029/RS013 i003p 00519 Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4):599–609. https ://doi.org/10.1016/j.asr.2007.07.048 Bilitza D, Sheikh M, Eyfrig R (1979) A global model for the height of the F2-peak using M3000 values from the CCIR numerical map. Telecommun J 46:549–553 Bilitza D, McKinnell LA, Reinisch B, Fuller-Rowell T (2011) The International Reference Ionosphere today and in the future. J Geod 85:909–920. https ://doi.org/10.1007/s0019 0-010-0427-x Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell LA, Reinisch B (2014) The International Reference Ionosphere 2012—a model of international collaboration. J Space Weather Space Clim 4:A07. https :// doi.org/10.1051/swsc/20140 04 Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429. https ://doi. org/10.1002/2016S W0015 93 Buonsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601 Decker DT, McNamara LF (2007) Validation of ionospheric weather predicted by global assimilation of ionospheric measurements (GAIM) models. Radio Sci 42:RS4017. https ://doi.org/10.1029/2007R S0036 32 Galkin IA, Reinisch BW (2008) The new ARTIST 5 for all digisondes. In: Iono- sonde Network Advisory Group Bulletin, in: IPS Radio and Space Services, Surry Hills, NSW, Australia, vol 69, pp 1–8. http://www.ips.gov.au/IPSHo sted/INAG/web-69/2008/artis t5-inag.pdf Galkin IA, Reinisch BW, Huang X, Bilitza D (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci 47:7. https ://doi.org/10.1029/2011R S0049 52 Houminer Z, Bennett JA, Dyson PL (1993) Real-time ionospheric model updat- ing. J Electr Electr Eng Aust 13(2):99–104 Khmyrov GM, Galkin IA, Kozlov AV et al (2008) Exploring digisonde iono- gram data with SAO-X and DIDBase. In: Proceedings of AIP conference radio sounding and plasma physics, vol 974, pp 175–185. https ://doi. org/10.1063/1.28850 27Kitanidis PK (1997) Introduction to geostatistics: application to hydrogeology. Cambridge University Press, Cambridge Kouris SS, Fotiadis DN (2002) Ionospheric variability: a comparative statisti- cal study. Adv Space Res 29(6):977–985. https ://doi.org/10.1016/S0273 -1177(02)00045 -5 Kouris SS, Fotiadis DN, Xenos TD (1998) On the day-to-day variation of foF2 and M(3000)F2. Adv Space Res 22(6):873–876. https ://doi.org/10.1016/ S0273 -1177(98)00116 -1 Liu RY, Smith PA, King JW (1983) A new solar index which leads to improved foF2 predictions using the CCIR Atlas. Telecommun J 50:408–414 McNamara LF, Decker DT, Welsh JA, Cole DG (2007) Validation of the Utah State University global assimilation of ionospheric measurements (GAIM) model predictions of the maximum usable frequency for a 3000 km circuit. Radio Sci 42:RS3015. https ://doi.org/10.1029/2006R S0035 89 McNamara LF, Baker CR, Decker DT (2008) Accuracy of USU-GAIM specifica- tions of foF2 and M(3000)F2 for a worldwide distribution of ionosonde locations. Radio Sci 43:RS1011. https ://doi.org/10.1029/2007R S0037 54 McNamara LF, Retterer JM, Baker CR, Bishop GJ, Cooke DL, Roth CJ, Welsh JA (2010) Longitudinal structure in the CHAMP electron densities and their implications for global ionospheric modeling. Radio Sci 45:RS2001. https ://doi.org/10.1029/2009R S0042 51 McNamara LF, Bishop GJ, Welsh JA (2011) Assimilation of ionosonde profiles into a global ionospheric model. Radio Sci 46:RS2006. https ://doi. org/10.1029/2010R S0044 57 Menvielle M, Berthelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys 29(3):415–432 Nava B, Radicella SM, Azpilicueta F (2011) Data ingestion into NeQuick 2. Radio Sci 46(6):RS0D17. https ://doi.org/10.1029/2010R S0046 35 Pezzopane M, Scotto C (2005) The INGV software for the automatic scaling of foF2 and MUF(3000)F2 from ionograms: a performance comparison with ARTIST 4.01 from Rome data. J Atmos Sol Terr Phys 67(12):1063–1073. https ://doi.org/10.1016/j.jastp .2005.02.022 Pezzopane M, Scotto C (2007) The automatic scaling of critical frequency foF2 and MUF(3000)F2: a comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Sci 42:RS4003. https ://doi.org/10.1029/2006R S0035 81 Pezzopane M, Scotto C, Tomasik Ł, Krasheninnikov I (2009) Autoscala: an aid for different ionosondes. Acta Geophys 58(3):513–526. https ://doi. org/10.2478/s1160 0-009-0038-1 Pezzopane M, Pietrella M, Pignatelli A, Zolesi B, Cander LR (2011) Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling. Radio Sci 46:RS5009. https ://doi.org/10.1029/2011R S0046 97 Pezzopane M, Pietrella M, Pignatelli A, Zolesi B, Cander LR (2013) Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods. Adv Space Res 52(10):1726–1736. https ://doi.org/10.1016/j. asr.2012.11.028 Pietrella M (2015) A software package generating long term and near real time predictions of the critical frequencies of the F2 layer over Europe and its applications. Int J Geosci 6(4):373–387. https ://doi.org/10.4236/ ijg.2015.64029 Pignalberi A, Pezzopane M, Tozzi R, De Michelis P, Coco I (2016) Comparison between IRI and preliminary swarm langmuir probe measurements dur- ing the St. Patrick storm period. Earth Planets Space 68(1):93. https ://doi. org/10.1186/s4062 3-016-0466-5 Pignalberi A, Pezzopane M, Rizzi R, Galkin IA (2018a) Effective solar indices for ionospheric modeling: a review and a proposal for a real-time regional IRI. Surv Geophys 39:125–167. https ://doi.org/10.1007/s1071 2-017-9438-yPignalberi A, Pezzopane M, Rizzi R, Galkin IA (2018b) Correction to: Effective solar indices for ionospheric modeling: a review and a proposal for a real- time regional IRI. Surv Geophys 39:169. https ://doi.org/10.1007/s1071 2-017-9453-z Reinisch BW, Galkin IA (2011) Global ionospheric radio observatory (GIRO). Earth Planets Space 63(4):377–381. https ://doi.org/10.5047/ eps.2011.03.001 Reinisch BW, Huang X (1983) Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottom side ionograms. Radio Sci 18(3):477–492. https ://doi.org/10.1029/RS018 i003p 00477 Reinisch BW, Huang X, Galkin IA, Paznukhov V, Kozlov A (2005) Recent advances in real-time analysis of ionograms and ionospheric drift meas- urements with digisondes. J Atmos Sol Terr Phys 67(12):1054–1062. https ://doi.org/10.1016/j.jastp .2005.01.009 Rostoker G (1972) Geomagnetic indices. Rev Geophys Space Phys 10:157 Scotto C (2009) Electron density profile calculation technique for Autoscala ionogram analysis. Adv Space Res 44:756–766. https ://doi.org/10.1016/j. asr.2009.04.037 Scotto C, Pezzopane M (2002) A software for automatic scaling of foF2 and MUF(3000)F2 from ionograms. In: Proceedings of the XXVII general assembly of the international union of radio science, 17–24 August, Maastricht, The Netherlands. International Union of Radio Science, CD- ROM, Ghent Scotto C, Pezzopane M (2008) Removing multiple reflections from the F2 layer to improve Autoscala performance. J Atmos Sol Terr Phys 70(15):1929– 1934. https ://doi.org/10.1016/j.jastp .2008.05.012 Scotto C, Pezzopane M, Zolesi B (2012) Estimating the vertical electron density profile from an ionogram: on the passage from true to virtual heights via the target function method. Radio Sci 47:RS1007. https ://doi. org/10.1029/2011R S0048 33 Shim JS, Kuznetsova M, Rastatter L et al (2011) CEDAR electrodynamics thermosphere ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: nmF2, hmF2, and vertical drift using ground-based observations. Space Weather 9:S12003. https ://doi. org/10.1029/2011S W0007 27 Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2006) The Utah State Univer- sity Gauss–Markov Kalman filter of the ionosphere: the effect of slant TEC and electron density profile data on model fidelity. J Atmos Sol Terr Phys 68(9):947–958. https ://doi.org/10.1016/j.jastp .2005.10.011 Tsagouri I, Zolesi B, Belehaki A, Cander LR (2005) Evaluation of the perfor- mance of the real-time updated simplified ionospheric regional model for the European area. J Atmos Sol-Terr Phys 67(12):1137–1146. https :// doi.org/10.1016/j.jastp .2005.01.012 Zolesi B, Cander LR (2014) Ionospheric prediction and forecasting. Springer, Berlin Zolesi B, Belehaki A, Tsagouri I, Cander LR (2004) Real-time updating of the simplified ionospheric regional model for operational applications. Radio Sci 39:RS2011. https ://doi.org/10.1029/2003R S0029 36 Zuccheretti E, Tutone G, Sciacca U, Bianchi C, Arokiasamy BJ (2003) The new AIS-INGV digital ionosonde. Ann Geophys 46(4):647–659. https ://doi. org/10.4401/ag-4377en
dc.description.obiettivoSpecifico2A. Fisica dell'alta atmosferaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorPignalberi, Alessioen
dc.contributor.authorPietrella, Marcoen
dc.contributor.authorPezzopane, Michaelen
dc.contributor.authorRizzi, Rolandoen
dc.contributor.departmentDipartimento di Fisica e Astronomia, Università di Bologna “Alma Mater Studiorum”, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Fisica e Astronomia, Università di Bologna “Alma Mater Studiorum”, Bologna, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy-
crisitem.author.orcid0000-0001-9459-4919-
crisitem.author.orcid0000-0001-9069-4090-
crisitem.author.orcid0000-0001-5800-2322-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
published_EPS_2018.pdfManuscript9.51 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 1

6
checked on Feb 7, 2021

Page view(s)

201
checked on Apr 24, 2024

Download(s)

77
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric