Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11961
DC FieldValueLanguage
dc.date.accessioned2018-10-16T09:36:55Zen
dc.date.available2018-10-16T09:36:55Zen
dc.date.issued2018en
dc.identifier.urihttp://hdl.handle.net/2122/11961en
dc.description.abstractUnderstanding natural variations of Rn (222Rn) concentrations is the fundamental prerequisite of using this radioactive gas as a tracer, or even precursor, of natural processes, including earthquakes. In this work, Rn concentrations in groundwater were continuously measured over a seven-month period, during 2017, in the Giardino Spring, Italy, together with groundwater levels in a nearby well installed into a fractured regional aquifer. Data were processed to reduce noise, and then analyzed to produce the Fourier spectra of Rn concentrations and groundwater levels. These spectra were compared with the spectrum of tidal forces. Results showed that diurnal and semidiurnal cycles of Rn concentrations, and filtered oscillations of groundwater levels, in the nearby well, are correlated with solar and luni-solar components of tidal forces, and suggested no correlation with the principal lunar components. Therefore, influencing factors linked to solar cycles, such as daily oscillations of temperature and atmospheric pressure, and related rock deformations, may have played a role in Rn concentrations and groundwater levels. An open question remains regarding the correlation, which is documented elsewhere, of Rn concentrations and groundwater levels with the lunar components of the solid Earth tides.en
dc.language.isoEnglishen
dc.relation.ispartofWateren
dc.relation.ispartofseries/10(2018)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectradon concentrationen
dc.subjectgroundwateren
dc.subjectwater tableen
dc.subject;Earth tideen
dc.subjectcentral Apenninesen
dc.titleDiurnal and Semidiurnal Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberid 1276en
dc.identifier.doi10.3390/w10091276en
dc.relation.references1. Sundal, A.V.; Henriksen, H.; Soldal, O.; Strand, T. The influence of geological factors on indoor Radon concentrations in Norway. Sci. Total Environ. 2004, 328, 41–53. [CrossRef] [PubMed] 2. Fonollosa, E.; Peñalver, A.; Borrull, F.; Aguilar, C. Radon in spring waters in the south of Catalonia. J. Environ. Radioact. 2016, 151, 275–281. [CrossRef] [PubMed] 3. King, P.T.;Michel, J.;Moore,W.S. Groundwater geochemistry of 228Ra, 226Ra, 222Rn. Geochim. Cosmochim. Acta 1982, 46, 1173–1182. [CrossRef] 4. Pinault, J.L.; Baubron, J.C. Signal processing of diurnal and semidiurnal variations in Radon and atmospheric pressure: A new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. J. Geophys. Res. 1997, 102, 18101–18120. [CrossRef]5. Morawska, L.; Phillips, C.R. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim. Cosmochim. Acta 1993, 57, 1783–1797. [CrossRef] 6. Tanner, A.B. Radon migration in the ground: A supplementary review. Nat. Radiat. Environ. III 1980, 1, 5–56. 7. Vàrhegyi, A.; Hakl, J.; Monnin, M.; Morin, J.P.; Seidel, J.L. Experimental study of Radon transport in water as test for a transportation microbubble model. J. Appl. Geophys. 1992, 29, 37–46. [CrossRef] 8. Sasaki, T.; Gunji, Y.; Okuda, T. Mathematical modeling of radon emanation. J. Nucl. Sci. Technol. 2004, 41, 142–151. [CrossRef] 9. Ingebritsen, S.E.; Manga, M. Earthquakes: Hydrogeochemical precursors. Nat. Geosci. 2014, 7, 697. [CrossRef] 10. Riggio, A.; Santulin,M. Earthquake forecasting: A review of Radon as seismic precursor. Boll. Geofis. Teorica Appl. 2015, 56, 95–114. 11. Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [CrossRef] 12. Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803–810. [CrossRef] [PubMed] 13. Wakita, H.; Nakamura, Y.; Notsu, K.; Noguchi, M.; Asada, T. Radon anomaly: A possible precursor of the 1978 Izu-Oshima-kinkai Earthquake. Science 1980, 207, 882–883. [CrossRef] [PubMed] 14. Adinolfi Falcone, R.; Carucci, V.; Falgiani, A.; Manetta, M.; Parisse, B.; Petitta, M.; Rusi, S.; Spizzico, M.; Tallini, M. Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L’Aquila earthquake. Ital. J. Geosci. 2012, 131, 459–474. [CrossRef] 15. Lambert, M.J.; Burnett, W.C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry 2003, 66, 55–73. [CrossRef] 16. Burnett, W.C.; Dulaiova, H. Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Cont. Shelf Res. 2006, 26, 862–873. [CrossRef] 17. Bredehoft, J.D. Response of well-aquifer systems to Earth tides. J. Geophys. Res. 1967, 72, 3075–3087. [CrossRef] 18. Carcaterra, A.; Doglioni, C. The westward drift of the lithosphere: A tidal ratchet? Geosci. Front. 2018, 9, 403–414. [CrossRef] 19. Kies, A.;Majerus, J.; D’Oreye, D.L. Underground radon gas concentrations related to Earth tides. Nuovo Cimento Soc. Ital. Fis. C 1999, 22, 287–293. 20. Richon, P.; Moreau, L.; Sabroux, J.C.; Pili, E.; Salaün, A. Evidence of both M2 and O1 Earth tide waves in radon-222 air concentration measured in a subglacial laboratory. J. Geophys. Res. 2012, 117. [CrossRef] 21. Shapiro, M.H.; Rice, A.; Mendenhall, M.H.; Melvin, J.D.; Tombrello, T.A. Recognition of environmentally caused variations in radon time series. Pure Appl. Geophys. 1984, 122, 309–326. [CrossRef] 22. Steinitz, G.; Piatibratova, O.; Kotlarsky, P. Possible effect of solar tides on radon signals. J. Environ. Radioact. 2011, 102, 749–765. [CrossRef] [PubMed] 23. Mentes, G.; Eper-Pápai, I. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary. J. Environ. Radioact. 2015, 149, 64–72. [CrossRef] [PubMed] 24. Steinitz, G.; Piatibratova, O.; Barbosa, S.M. Radon daily signals in the Elat Granite, southern Arava, Israel. J. Geophys. Res. Solid Earth 2007, 112. [CrossRef] 25. Richon, P.; Perrier, F.; Pili, E.; Sabroux, J.C. Detectability and significance of 12 h barometric tide in radon-222 signal, dripwater flow rate, air temperature and carbon dioxide concentration in an underground tunnel. Geophys. J. Int. 2009, 176, 683–694. [CrossRef] 26. Steinitz, G.; Piatibratova, O.; Kotlarsky, P. Sub-daily periodic radon signals in a confined radon system. J. Environ. Radioact. 2014, 134, 128–135. [CrossRef] [PubMed] 27. Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R. Precise measurement of the 222Rn half-life: A probe to monitor the stability of radioactivity. Phys. Lett. B 2015, 743, 526–530. [CrossRef] 28. Galli, P.; Galadini, F.; Pantosti, D. Twenty years of paleoseismology in Italy. Earth-Sci. Rev. 2008, 88, 89–117. [CrossRef] 29. Riguzzi, F.; Crespi, M.; Devoti, R.; Doglioni, C.; Pietrantonio, G.; Pisani, A.R. Geodetic strain rate and Earthquake size: New clues for seismic hazard studies. Phys. Earth Planet. Int. 2012, 206, 67–75. [CrossRef] 30. Barberio, M.D.; Barbieri, M.; Billi, A.; Doglioni, C.; Petitta, M. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep. 2017, 7, 11735. [CrossRef] [PubMed] 31. Petitta, M.; Mastrorillo, L.; Preziosi, E.; Banzato, F.; Barberio, M.D.; Billi, A.; Cambi, C.; De Luca, G.; Di Carlo, G.; Di Curzio, D.; et al. Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: Hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol. J. 2018, 26, 1–18. [CrossRef] 32. Igarashi, G.; Saeki, S.; Takahata, N.; Sumikawa, K.; Tasaka, S.; Sasaki, Y.; Takahashi, M.; Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 1995, 269, 60–61. [CrossRef] [PubMed] 33. Tsunogai, U.; Wakita, H. Precursory chemical changes in ground water: Kobe earthquake, Japan. Science 1995, 269, 61–63. [CrossRef] [PubMed] 34. Piersanti, A.; Cannelli, V.; Galli, G. The Pollino 2012 seismic sequence: Clues from continuous radon monitoring. Solid Earth 2016, 7, 1303–1316. [CrossRef] 35. Cannelli, V.; Piersanti, A.; Spagnuolo, E.; Galli, G. Preliminary analysis of radon time series before the Ml = 6 Amatrice earthquake: Possible implications for fluid migration. Ann. Geophys. 2016. [CrossRef] 36. Ithaca (ITaly HAzard from CApable Faults) Database. Available online: http://www.isprambiente.gov.it/ en/projects/soil-and-territory/italy-hazards-from-capable-faulting (accessed on 10 September 2018). 37. ISPRA Database SINAnet (Rete del Sistema Informativo Nazionale Ambientale). Available online: http: //www.sinanet.isprambiente.it/it (accessed on 10 September 2018). 38. Doglioni, C. A proposal for the kinematic modelling of W-dipping subductions-possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [CrossRef] 39. Cavinato, G.P.; Celles, P.G.D. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology 1999, 27, 955–958. [CrossRef] 40. Billi, A.; Tiberti, M.M.; Cavinato, G.P.; Cosentino, D.; Di Luzio, E.; Keller, J.V.A.; Kluth, C.; Orlando, L.; Parotto, M.; Praturlon, A.; et al. First results from the CROP-11 deep seismic profile, central Apennines, Italy: Evidence of mid-crustal folding. J. Geol. Soc. 2006, 163, 583–586. [CrossRef] 41. Patacca, E.; Scandone, P.; Di Luzio, E.; Cavinato, G.P.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27. [CrossRef] 42. Devoti, R.; D’Agostino, N.; Serpelloni, E.; Pietrantonio, G.; Riguzzi, F.; Avallone, A.; Cavaliere, A.; Cheloni, D.; Cecere, G.; D’Ambrosio, C.; et al. A combined velocity field of the Mediterranean region. Ann. Geophys. 2017, 60, 0215. [CrossRef] 43. Cavinato, G.P.; Carusi, C.; Dall’Asta, M.; Miccadei, E.; Piacentini, T. Sedimentary and tectonic evolution of Plio–Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sediment. Geol. 2002, 148, 29–59. [CrossRef] 44. Gori, S.; Giaccio, B.; Galadini, F.; Falcucci, E.; Messina, P.; Sposato, A.; Dramis, F. Active normal faulting along the Mt. Morrone south-western slopes (central Apennines, Italy). Int. J. Earth Sci. 2011, 100, 157–171. [CrossRef] 45. Gori, S.; Falcucci, E.; Dramis, F.; Galadini, F.; Galli, P.; Giaccio, B.; Messina, P.; Pizzi, A.; Sposato, A.; Cosentino, D. Deep-seated gravitational slope deformation, large-scale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy): Geomorphological and paleoseismological analyses. Geomorphology 2014, 208, 88–101. [CrossRef] 46. Galadini, F.; Galli, P. Archaeoseismology in Italy: Case studies and implications on long-term seismicity. J. Earthq. Eng. 2001, 5, 35–68. [CrossRef] 47. Romano, M.A.; Nardis, R.D.; Garbin, M.; Peruzza, L.; Priolo, E.; Lavecchia, G.; Romanelli, M. Temporary seismic monitoring of the Sulmona area (Abruzzo, Italy): A quality study of microearthquake locations. Nat. Hazards Earth Syst. Sci. 2013, 13, 2727–2744. [CrossRef] 48. Celico, P. Schema idrogeologico dell’Appennino carbonatico centro-meridionale.Mem. Note dell’Ist. Geol. Appl. 1979, 14, 1–97. 49. Boni, C.; Bono, P.; Capelli, G. Schema Idrogeologico dell’Italia centrale: Note illustrative e carte. Mem. Soc. Geol. Ital. 1986, 35, 991–1012. 50. Salvati, R. Natural hydrogeological laboratories: A new concept in regional hydrogeology studies. A case history from central Italy. Environ. Geol. 2002, 41, 960–965. [CrossRef] 51. Miccadei, E.; Cavinato, G.P.; Vittori, E. Elementi neotettonici della conca di Sulmona. Stud. Geol. Camerti 1992, 1, 165–174. 52. Desiderio, G.; Folchi Vici d’Arcevia, C.; Nanni, T.; Rusi, S. Hydrogeological mapping of the highly anthropogenically influenced Peligna Valley intramontane basin (Central Italy). J. Maps 2012, 8, 165–168. [CrossRef] 53. Conese, M.; Nanni, T.; Peila, C.; Rusi, S.; Salvati, R. Idrogeologia della Montagna del Morrone (Appennino Abruzzese): Dati preliminari. Mem. Soc. Geol. Ital. 2001, 56, 181–196. 54. Csige, I. Radon and Space Radiation Protection Measurements. Ph.D. Thesis, Lajos Kossuth University, Budapest, Hungary, 1997. 55. CalSky—Solid Earth Tides Free Resource. Available online: https://www.calsky.com (accessed on 10 September 2018). 56. Lowrie,W. Fundamentals of Geophysics; Cambridge University Press: Cambridge, UK, 2007; pp. 50–56. 57. MatlabR2017b ‘Mscohere’ Function. Available online: Availableonline:https://mathworks.com/help/ signal/ref/mscohere.html (accessed on 10 September 2018). 58. Doodson, A.T. The harmonic development of the tide-generating potential. Proc. R. Soc. Lond. A 1921, 100, 305–329. [CrossRef] 59. Schureman, P. Manual of Harmonic Analysis and Prediction of Tides; USA Department of Commerce: Washington, DC, USA, 1940. 60. Groves-Kirkby, C.J.; Denman, A.R.; Crockett, R.G.M.; Phillips, P.S. Periodicity in Domestic Radon Time Series-Evidence for Earth Tides. In Proceedings of the 11th International Congress of the International Radiation Protection Association (IRPA11e6a27), Madrid, Spain, 23–28 May 2004; pp. 23–28. 61. Lomb, N.R. Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [CrossRef] 62. Scargle, J.D. Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data. Astrophys. J. 1982, 263, 835–853. [CrossRef] 63. Melchior, P. The Earth’s Tides; Pergamon: Oxford, UK, 1966. 64. Ball, T.K.; Cameron, D.G.; Colma, T.B.; Roberts, P.D. Behavior of Radon in the geological environment: A review. Q. J. Eng. Geol. 1991, 24, 169–182. [CrossRef] 65. Finkelstein, M.; Eppelbaum, L.V.; Price, C. Analysis of temperature influences on the amplitude frequency characteristics of Radon gas concentration. J. Environ. Radioact. 2006, 86, 251–270. [CrossRef] [PubMed] 66. Jin, S.; Wu, Y.; Heinkelmann, R.; Park, J. Diurnal and semidiurnal atmospheric tides observed by co-located GPS and VLBI measurements. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1366–1372. [CrossRef] 67. Mentes, G. Investigation of the relationship between rock strain and radon concentration in the tidal frequency-range. J. Appl. Geophys. 2018, 155, 232–236. [CrossRef] 68. Sugisaki, R. Deep-seated gas emission induced by the earth tide: A basic observation for geochemical earthquake prediction. Science 1981, 212, 1264–1266. [CrossRef] [PubMed] 69. Igarashi, G.; Wakita, H. Tidal responses and earthquake-related changes in the water level of deep wells. J. Geophys. Res. Solid Earth 1991, 96, 4269–4278. [CrossRef] 70. Aumento, F. Radon tides on an active volcanic island: Terceira, Azores. Geofís. Int. 2002, 41, 499–505. 71. Chanton, J.P.; Burnett,W.C.; Dulaiova, H.; Corbett, D.R.; Taniguchi, M. Seepage rate variability in Florida Bay driven by Atlantic tidal height. Biogeochemistry 2003, 66, 187–202. [CrossRef] 72. Crockett, R.G.; Gillmore, G.K.; Phillips, P.S.; Denman, A.R.; Groves-Kirkby, C.J. Tidal synchronicity of built-environment radon levels in the UK. Geophys. Res. Lett. 2006, 33, L05308. [CrossRef]en
dc.description.obiettivoSpecifico2T. Deformazione crostale attivaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorBarberio, Marino Domenicoen
dc.contributor.authorGori, Francescaen
dc.contributor.authorBarbieri, Maurizioen
dc.contributor.authorBilli, Andreaen
dc.contributor.authorDevoti, Robertoen
dc.contributor.authorDoglioni, Carloen
dc.contributor.authorPetitta, Marcoen
dc.contributor.authorRiguzzi, Federicaen
dc.contributor.authorRusi, Sergioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCNR, Istituto di Geologia Ambientale e Geoingegneria, Roma, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-3319-2355-
crisitem.author.orcid0000-0002-6595-103X-
crisitem.author.orcid0000-0002-6368-1873-
crisitem.author.orcid0000-0002-0037-0074-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0003-1137-6137-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.orcid0000-0003-0512-5614-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Barberio_etal.pdf2.84 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 7, 2021

Page view(s)

317
checked on Apr 24, 2024

Download(s)

93
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric