Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11918
Authors: Chiaradia, Massimo* 
Pujol-Solà, Núria* 
Farré-de-Pablo, Julia* 
Aiuppa, Alessandro* 
Paonita, Antonio* 
Rizzo, Andrea Luca* 
Brusca, Lorenzo* 
Title: Geochemistry and isotope composition (Sr, Pb, δ 66 Zn) of Vulcano fumaroles (Aeolian Islands, Italy)
Issue Date: 2018
Series/Report no.: /493 (2018)
DOI: 10.1016/j.chemgeo.2018.05.038
URI: http://hdl.handle.net/2122/11918
Abstract: We present and discuss temperatures, major and trace element gas geochemistry, radiogenic isotopes (Pb, Sr) and the first Zn isotope data of fumarole condensates and altered rocks from the Vulcano fumarolic field. The fumaroles of the La Fossa cone, sampled on 5th May 2015, have temperatures ranging between 233 and 427 °C. They plot compositionally on the mixing trend between the magmatic and hydrothermal end-members defined by previous studies, but are strongly displaced towards the hydrothermal component. Correlations of radiogenic (Sr, Pb) and stable isotopes of Zn with δ13CCO2 and several trace elements of the fumarolic acid condensates support mixing between the above mentioned distinct (magmatic and hydrothermal) fluids. The magmatic endmember has a less radiogenic Sr (87Sr/86Sr ~0.7045) and heavier Zn isotope composition (δ66Zn ~0.3‰). The hydrothermal fluid end-member has a more radiogenic 87Sr/86Sr signature (> 0.7055), which could be due to leaching of radiogenic Sr from the crystalline basement rocks or reflect seawater Sr. It is also characterized by lighter Zn isotope composition (δ66Zn < −0.3), most likely reflecting equilibrium fractionation of Zn isotopes during precipitation of sphalerite (ZnS) from the hydrothermal fluid. Nonetheless, some scatter in the correlation trends suggests either the involvement of additional (subordinate) source(s) or temporal variations in isotopic and chemical compositions of the two above end-members. Pb isotope compositions of the fumaroles sampled in this study show a shift towards less radiogenic values compared to pre-2001 fumaroles. This could indicate either a change in the hydrothermal circulation pattern (leading to leaching of rocks with different isotopic compositions) or the involvement of a new, isotopically distinct, magmatic fluid. The alteration zones around the fumarole vents are also characterized by systematic correlations of Pb and Zn isotopes with major and trace elements. We interpret these as the result of the addition onto the substratum volcanic rock of Pb and Zn from the fumaroles. Zn isotope signatures of the alteration zones are significantly heavier than those of the corresponding fumaroles (δ66Zn=0.3–1.6) probably due to equilibrium fractionation occurring during sphalerite precipitation at the vent discharge
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Charadia IsotZnPbSrAtVulcan 18.pdf2.18 MBAdobe PDFView/Open
Show full item record

Page view(s)

6
checked on Aug 15, 2018

Download(s)

1
checked on Aug 15, 2018

Google ScholarTM

Check

Altmetric