Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11908
DC FieldValueLanguage
dc.date.accessioned2018-07-16T06:13:50Zen
dc.date.available2018-07-16T06:13:50Zen
dc.date.issued2018-07-12en
dc.identifier.urihttp://hdl.handle.net/2122/11908en
dc.description.abstractFogo volcano erupted in 2014–2015 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountains, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows. By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along the arterial flow. In this paper, we analyze the emplacement processes based on observations carried out directly on the lava flow field, remote sensing measurements carried out with a thermal camera, SO2 fluxes, and satellite images, to unravel the key factors leading to the development of lava tubes. These were responsible for the rapid expansion of lava for the ~7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. The key factors leading to the development of tubes were the low topography and the steady magma supply rate along the arterial lava flow. Comparing time-averaged discharge rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for hazard assessment and risk mitigation at this and other volcanoes.en
dc.description.sponsorshipThis research received no external funding.en
dc.language.isoEnglishen
dc.relation.ispartofRemote Sensingen
dc.relation.ispartofseries/10(2018)en
dc.subjectFogo volcanoen
dc.subjectlava flow inflationen
dc.subjectlava tubesen
dc.subjecttime averaged discharge rateen
dc.subjectmagma supply rateen
dc.titleSatellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014-15 Effusive Eruption at Fogo Volcano (Cape Verde)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1115en
dc.subject.INGVvolcanic hazarden
dc.subject.INGVremote sensing monitoringen
dc.subject.INGVeffusive eruptionen
dc.identifier.doi10.3390/rs10071115en
dc.relation.references1. Walker, G.P.L. Lengths of lava flows. Philos. Trans. R. Soc. Lond. 1973, 274, 107–118. [CrossRef] 2. Kilburn, C.R.J.; Lopes, R.M.C. The growth of aa lava flow fields on Mount Etna, Sicily. J. Geophys. Res. Solid Earth 1988, 93, 14759–14772. [CrossRef] 3. Calvari, S.; Pinkerton, H. Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J. Geophys. Res. Solid Earth 1998, 103, 27291–27302. [CrossRef] 4. Bonaccorso, A.; Calvari, S.; Boschi, E. Hazard mitigation and crisis management during major flank eruptions at Etna volcano: Reporting on real experience. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society: London, UK, 2015; Volume 426, pp. 447–461, ISBN 978-1-86239-736-1. [CrossRef] 5. Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Heliker, C.C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawaii. J. Geophys. Res. Solid Earth 1998, 103, 27303–27323. [CrossRef] 6. Calvari, S.; Coltelli, M.; Neri, M.; Pompilio, M.; Scribano, V. The 1991–1993 Etna eruption: Chronology and lava flow field evolution. Acta Vulcanol. 1994, 4, 1–14. Remote Sens. 2018, 10, 1115 17 of 20 7. Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes; Cambridge University Press: Cambridge, UK, 2013; p. 728, ISBN 978-0-521-85945-5. 8. Solana, M.C.; Calvari, S.; Kilburn, C.R.J.; Gutierrez, H.; Chester, D.; Duncan, A. Supporting the Development of Procedures for Communications During Volcanic Emergencies: Lessons Learnt from the Canary Islands (Spain) and Etna and Stromboli (Italy). Adv. Volcanol. 2017. [CrossRef] 9. Guest, J.E.; Kilburn, C.R.J.; Pinkerton, H.; Duncan, A.M. The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull. Volcanol. 1987, 49, 527–540. [CrossRef] 10. Kilburn, C.R.J.; Lopes, R.M.C. General Patterns of Flow Field Growth: Aa and Blocky Lavas. J. Geophys. Res. Solid Earth 1991, 96, 19721–19732. [CrossRef] 11. Guest, J.E.; Underwood, J.R.; Greeley, R. Role of lava tubes in flows from the Observatory Vent, 1971 eruption on Mount Etna. Geol. Mag. 1980, 117, 601–606. [CrossRef] 12. Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K. Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii. Bull. Volcanol. 1993, 55, 407–413. [CrossRef] 13. Calvari, S.; Pinkerton, H. Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J. Volcanol. Geotherm. Res. 1999, 90, 263–280. [CrossRef] 14. Walker, G.P.L. Structure, and origin by injection under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava inflation clefts” in Hawaii. Bull. Volcanol. 1991, 53, 546–558. [CrossRef] 15. Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K. Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 1994, 106, 351–370. [CrossRef] 16. Rossi, M.J.; Gudmundsson, A. The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J. Volcanol. Geotherm. Res. 1996, 72, 291–308. [CrossRef] 17. Cashman, K.V.; Kauahikaua, J.P. Reevaluation of vesicle distributions in basaltic lava flows. Geology 1997, 25, 419–422. [CrossRef] 18. Keszthelyi, L.; Self, S. Some physical requirements for the emplacement of long basaltic lava flows. J. Geophys. Res. Solid Earth 1998, 103, 27447–27464. [CrossRef] 19. Self, S.; Keszthelyi, L.; Thordarson, T. The importance of pahoehoe. Annu. Rev. Earth Planet. Sci. 1998, 26, 81–110. [CrossRef] 20. Self, S.; Thordarson, T.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T. A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys. Res. Lett. 1996, 23, 2689–2692. [CrossRef] 21. Thordarson, T.; Self, S. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes? J. Geophys. Res. Solid Earth 1998, 103, 27411–27445. [CrossRef] 22. Applegarth, L.J.; Pinkerton, H.; James, M.R.; Calvari, S. Lava flow superposition: The reactivation of flow units in compound flow fields. J. Volcanol. Geotherm. Res. 2010, 194, 100–106. [CrossRef] 23. Favalli, M.; Harris, A.J.L.; Fornaciai, A.; Pareschi, M.T.; Mazzarini, F. The distal segment of Etna’s 2001 basaltic lava flow. Bull. Volcanol. 2010, 72, 119–127. [CrossRef] 24. Favalli, M.; Fornaciai, A.; Mazzarini, F.; Harris, A.J.L.; Neri, M.; Behncke, B.; Pareschi, M.T.; Tarquini, S.; Boschi, E. Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J. Geophys. Res. Solid Earth 2010, 115. [CrossRef] 25. Umino, S.; Nonaka, M.; Kauahikaua, J. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kaimu ̄ flow of Kilauea volcano at Kaimu Bay, Hawaii. Bull. Volcanol. 2006, 69, 125–139. [CrossRef] 26. James, M.R.; Applegarth, L.J.; Pinkerton, H. Lava channel roofing, overflows, breaches and switching: Insights from the 2008–2009 eruption of Mt. Etna. Bull. Volcanol. 2012, 74, 107–117. [CrossRef] 27. Hamilton, C.W.; Glaze, L.S.; James, M.R.; Baloga, S.M. Topographic and stochastic influences on pahoehoe lava lobe emplacement. Bull. Volcanol. 2013, 75, 756. [CrossRef] 28. Slatcher, N.; James, M.R.; Calvari, S.; Ganci, G.; Browning, J. Quantifying effusion rates at active volcanoes through integrated time-lapse laser scanning and photography. Remote Sens. 2015, 7, 14967–14987. [CrossRef] 29. Koeppen, W.C.; Patrick, M.; Orr, T.; Sutton, A.J.; Dow, D.; Wright, R. Constraints on the partitioning of K ̄ılauea’s lavas between surface and tube flows, estimated from infrared satellite data, sulfur dioxide emission rates, and field observations. Bull. Volcanol. 2013, 75, 716. [CrossRef] Remote Sens. 2018, 10, 1115 18 of 20 30. Cappello, A.; Ganci, G.; Calvari, S.; Perez, N.M.; Hernandez, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C. Lava Flow Hazard Modeling during the 2014–2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [CrossRef] 31. Sutton, A.J.; Elias, T.; Kauahikaua, J. Lava-Effusion Rates for the Puu Oo-Kupaianaha Eruption derived from SO2 Emissions and Very Low Frequency (VLF) Measurements. USGS Prof. Pap. 2003, 1676, 137–148. 32. Allard, P. Endogenous magma degassing and storage at Mount Etna. Geophys. Res. Lett. 1997, 24, 2219–2222. [CrossRef] 33. Courtney, R.C.; White, R.S. Anomalous heat flow and geoid across the Cape Verde Rise: Evidence for dynamic support from a thermal plume in the mantle. Geophys. J. R. Astr. Soc. 1986, 87, 815–867. [CrossRef] 34. Amelung, F.; Day, S. InSAR observations of the 1995 Fogo, Cape Verde, eruption: Implications for the effects of collapse events upon island volcanoes. Geophys. Res. Lett. 2002, 29, 47-1–47-4. [CrossRef] 35. Day, S.J.; Heleno da Silva, S.I.N.; Fonseca, J.F.B.D. A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands. J. Volcanol. Geotherm. Res. 1999, 94, 191–218. [CrossRef] 36. Ramalho, R.S.; Winckler, G.; Madeira, J.; Helffrich, G.R.; Hipolito, A.; Quartau, R.; Adena, K.; Schaefer, J.M. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv. 2015, 1, e1500456. [CrossRef] [PubMed] 37. Hildner, E.; Klügel, A.; Hauff, F. Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde Archipelago. Contrib. Mineral. Petrol. 2011, 162, 751–772. [CrossRef] 38. Escrig, S.; Doucelance, R.; Moreira, M.; Allègre, C.J. Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol. 2005, 219, 93–113. [CrossRef] 39. Texier-Teixeira, P.; Chouraqui, F.; Perrillat-Collomb, A.; Lavigne, F.; Cadag, J.R.; Grancher, D. Reducing volcanic risk on Fogo Volcano, Cape Verde, through a participatory approach: Which outcome? Nat. Hazards Earth Syst. Sci. 2014, 14, 2347–2358. [CrossRef] 40. Dionis, S.M.; Melian, G.; Rodriguez, F.; Hernandez, P.A.; Padron, E.; Perez, N.M.; Barrancos, J.; Padilla, G.; Sumino, H.; Fernandes, P.; et al. Diffuse volcanic gas emission and thermal energy release from the summit crater of Pico do Fogo, Cape Verde. Bull. Volcanol. 2015, 77, 10. [CrossRef] 41. Dionis, S.M.; Perez, N.M.; Hernandez, P.A.; Melian, G.; Rodriguez, F.; Padron, E.; Sumino, H.; Barrancos, J.; Padilla, G.; Fernandes, P.; et al. Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa. Earth Plan. Space 2015, 67, 48. [CrossRef] 42. Pérez, N.M.; Dionis, S.; Fernandes, P.; Barrancos, J.; Rodríguez, F.; Bandomo, Z.; Hernández, P.A.; Melián, G.V.; Silva, S.; Padilla, G.; et al. Precursory signals of the 2014–15 Fogo eruption (Cape Verde) detected by surface CO2 emission and heat flow observations. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015. 43. Barrancos, J.; Dionis, S.; Quevedo, R.; Fernandes, P.; Rodríguez, F.; Pérez, N.M.; Silva, S.; Cardoso, N.; Hernández, P.A.; Melián, G.V.; et al. Sulphur dioxide (SO2) emissions during the 2014–15 Fogo eruption, Cape Verde. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015. 44. Galle, B.; Oppenheimer, C.; Geyer, A.; McGonigle, A.; Edmonds, M.; Horrocks, L.A. A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 2002, 119, 241–254. [CrossRef] 45. Barrancos, J.; Roselló, J.I.; Calvo, D.; Padrón, E.; Melián, G.; Hernández, P.A.; Pérez, N.M.; Millán, M.M.; Galle, B. SO2 emission from active volcanoes measured simultaneously by COSPEC and mini-DOAS. Pure Appl. Geophys. 2008, 165, 115–133. [CrossRef] 46. Mata, J.; Martins, N.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R.S.; Silva, P.; Moreira, M.; Caldeira, R.; Rodrigues, J.; et al. The 2014–15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos 2017, 288–289, 91–107. [CrossRef] 47. Spilliaert, N.; Allard, P.; Metrich, N.; Sobolev, A.V. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J. Geophys. Res. Solid Earth 2006, 111. [CrossRef] 48. Steffke, A.M.; Harris, A.J.L.; Burton, M.; Caltabiano, T.; Salerno, G.G. Coupled use of COSPEC and satellite measurements to define the volumetric balance during effusive eruptions at Mt. Etna, Italy. J. Volcanol. Geotherm. Res. 2010, 205, 47–53. [CrossRef] Remote Sens. 2018, 10, 1115 19 of 20 49. Caltabiano, T.; Burton, M.; Giammanco, S.; Allard, P.; Bruno, N.; Muré, F.; Romano, R. Volcanic gas emissions from the summit craters and flanks of Mt. Etna, 1987–2000. In Mt. Etna: Volcano Laboratory; Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S., Eds.; American Geophysical Union: Washington, DC, USA, 2004; Volume 143, pp. 111–128, ISBN 0-87590-408-4. [CrossRef] 50. Ganci, G.; Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. HOTSAT: A multiplatform system for the satellite thermal monitoring of volcanic activity. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society: London, UK, 2015; Volume 426, pp. 207–222, ISBN 978-1-86239-736-1. 51. Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1. [CrossRef] 52. Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; Del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomat. Nat. Hazards Risk 2011, 2, 279–290. [CrossRef] 53. Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 544–550. [CrossRef] 54. Wooster, M.; Zhukov, B.; Oertel, D. Fire radiative energy release for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [CrossRef] 55. Ganci, G.; James, M.R.; Calvari, S.; Del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [CrossRef] 56. Spampinato, L.; Ganci, G.; Hernández, P.A.; Calvo, D.; Tedesco, D.; Pérez, N.M.; Calvari, S.; Del Negro, C.; Yalire, M.M. Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J. Geophys. Res. Solid Earth 2013, 118, 5771–5784. [CrossRef] 57. Harris, A.; Blake, S.; Rothery, D.; Stevens, N. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real-time thermal volcano monitoring. J. Geophys. Res. Solid Earth 1997, 102, 7985–8003. [CrossRef] 58. Patrick, M.R.; Harris, A.J.L.; Ripepe, M.; Dehn, J.; Rothery, D.A.; Calvari, S. Strombolian explosive styles and source conditions: Insights from thermal (FLIR) video. Bull. Volcanol. 2007, 69, 769–784. [CrossRef] 59. Richter, N.; Favalli, M.; Zeeuw-van Dalfsen, E.; Fornaciai, A.; da Silva Fernandes, R.M.; Perez Rodriguez, N.; Levy, J.; Silva, S.V.; Walter, T.R. Lava flow hazard at Fogo Volcano, Cape Verde, before and after the 2014–2015 eruption. Nat. Hazards Earth Syst. Sci. Discuss. 2016, 16, 1925–1951. [CrossRef] 60. Oze, C.; Winter, J.D. The occurrence, vesiculation, and solidification of dense blue glassy pahoehoe. J. Volcanol. Geotherm. Res. 2005, 142, 285–301. [CrossRef] 61. Gonzales, A.R.; Pérez Torrado, F.J.; Carracedo Gómez, J.C.; Medina, C.J.M.; Garcia, A.B.; de la Torre, E.G.; Cigala, A.N.; Paris, R.; Rodrigues, A.N.; Dinis, H.A.; et al. Carta Geológica Ilha do Fogo, Cabo Verde; D.L.: GC 372-2015; Mercurio Editorial: Madrid, Spain, 2015; ISBN 978-84-943863-8-1. 62. Houghton, B.F.; Schmincke, H.-U. Rothenberg scoria cone, East Eifel: A complex Strombolian and phreatomagmatic volcano. Bull. Volcanol. 1989, 52, 28–48. [CrossRef] 63. Calvari, S.; Pinkerton, H. Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J. Volcanol. Geotherm. Res. 2004, 132, 225–239. [CrossRef] 64. Behncke, B.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 2014, 270, 10–21. [CrossRef] 65. Bonaccorso, A.; Calvari, S.; Linde, A.; Sacks, S. Eruptive processes leading to the most explosive lava fountain at Etna volcano: The 23 November 2013 episode. Geophys. Res. Lett. 2014, 41, 4912–4919. [CrossRef] 66. Bagnardi, M.; Gonzales, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [CrossRef] 67. Stevens, N.F.; Wadge, G.; Williams, C.A.; Morley, J.G.; Muller, J.-P.; Murray, J.B.; Upton, M. Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. J. Geophys. Res. Solid Earth 2001, 106, 11293–11313. [CrossRef] 68. Del Negro, C.; Fortuna, L.; Herault, A.; Vicari, A. Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull. Volcanol. 2008, 70, 805–812. [CrossRef] Remote Sens. 2018, 10, 1115 20 of 20 69. Herault, A.; Vicari, A.; Ciraudo, A.; Del Negro, C. Forecasting lava flow hazards during the 2006 Etna eruption: Using the MAGFLOW cellular automata model. Comput. Geosci. 2009, 35, 1050–1060. [CrossRef] 70. Favalli, M.; Chirico, G.D.; Papale, P.; Pareschi, M.T.; Boschi, E. Lava flow hazard at Nyiragongo volcano, DRC. Bull. Volcanol. 2009, 71, 363–374. [CrossRef] 71. Favalli, M.; Chirico, G.D.; Papale, P.; Pareschi, M.T.; Coltelli, M.; Lucaya, N.; Boschi, E. Computer simulations of lava flow paths in the town of Goma, Nyiragongo volcano, Democratic Republic of Congo. J. Geophys. Res. 2006, 111. [CrossRef] 72. Farquharson, J.I.; James, M.R.; Tuffen, H. Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flow field at Cordón-Caulle, Chile. J. Volcanol. Geotherm. Res. 2015, 304, 336–348. [CrossRef] 73. Magnall, N.; James, M.R.; Tuffen, H.; Vye-Brown, C. Emplacing a cooling-limited rhyolite lava flow: Similarities with basaltic lava flows. Front. Earth Sci. 2017, 5, 44. [CrossRef]en
dc.description.obiettivoSpecifico6V. Pericolosità vulcanica e contributi alla stima del rischioen
dc.description.journalTypeJCR Journalen
dc.contributor.authorCalvari, Soniaen
dc.contributor.authorGanci, Gaetanaen
dc.contributor.authorVictória, Sónia Silvaen
dc.contributor.authorHernandez, Pedro A.en
dc.contributor.authorPerez, Nemesio M.en
dc.contributor.authorAlfama, Veraen
dc.contributor.authorBarrancos, Joséen
dc.contributor.authorCabral, Jeremiasen
dc.contributor.authorCardoso, Nadiren
dc.contributor.authorDionis, Samaraen
dc.contributor.authorFernandes, Pauloen
dc.contributor.authorMelian, Gladysen
dc.contributor.authorPereira, Joséen
dc.contributor.authorSemedo, Hélioen
dc.contributor.authorPadilla, Germánen
dc.contributor.authorRodriguez, Fátimaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0002-9914-1107-
crisitem.author.orcid0000-0003-4707-515X-
crisitem.author.orcid0000-0003-1418-6152-
crisitem.author.orcid0000-0002-4555-8484-
crisitem.author.orcid0000-0003-2604-2375-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Calvari et al 2018-Fogo.pdfpublished pdf4.76 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

8
checked on Feb 10, 2021

Page view(s)

265
checked on Apr 24, 2024

Download(s)

86
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric