Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11635
DC FieldValueLanguage
dc.date.accessioned2018-04-05T08:21:14Zen
dc.date.available2018-04-05T08:21:14Zen
dc.date.issued2018en
dc.identifier.urihttp://hdl.handle.net/2122/11635en
dc.description.abstractEven if plate tectonics was a truly significant unifying theory that began to give sense to a series of different geological observations, plate motions were considered scattered. The advent of space geodesy confirmed and greatly refined the models of plate kinematics, allowing also to study the motion of the lithosphere with respect to the inner layers of the Earth. Switching from the no net rotation to the hotspot reference frames, plate motion assumes coherence with a mean global westward drift of the lithosphere with respect to the mantle. However, the driving forces of plate tectonics are still under investigation and space geodesy may provide fundamental tools to develop comprehensive models which can take into account the contributes of mantle density gradients and astronomical forces, as Earth’s rotation and tides. This paper is dedicated to Prof. Michele Caputo who was a pioneer in measuring the misalignment of the tidal bulge with respect to the Earth–Moon gravitational alignment. The misplaced mass in excess may account for the westerly directed torque of the lithosphere relative to the mantle. Local GPS networks and satellite observations are providing new insights on plate boundary tectonics and allow unravelling the evolution of the interplay between the shallow brittle upper crust and the underlying visco-plasticlower crust, which is deforming in a steady state regime without releasing relevant seismic waves. Along active tectonic areas, zones marked by low strain rates are suitable to store larger energy, subsequently dissipated during the coseismic stage. GPS and InSAR observations have widely increased the capability to monitor the spatial and temporal variations of deformation. The coseismic deformation pattern suggests a different mechanism of energy store and release, mainly gravitational in extensional tectonic settings and essentially elastic in strike-slip and contractional tectonic settings. The increasing details provided by future dense and low-cost geodetic networks will allow to detect reliable deformation transients and new insight on seismic precursors.en
dc.language.isoEnglishen
dc.relation.ispartofRendiconti Linceien
dc.relation.ispartofseriessup. 1/ 29 (2018)en
dc.subjectSpace geodesyen
dc.subjectPlate motionen
dc.subjectSeismic cycleen
dc.subjectStrain rateen
dc.titleThe space geodesy revolution for plate tectonics and earthquake studiesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber29-34en
dc.subject.INGV04.03. Geodesyen
dc.identifier.doi10.1007/s12210-017-0639-6en
dc.relation.referencesAltamimi Z, Collilieux X, Metivier L (2012) ITRF2008 plate motion model. J Geophys Res. doi:10.1029/2011jb008930(B07402) Barzaghi R, Migliaccio F, Reguzzoni M, Albertella A (2015) The Earth gravity field in the time of satellites. Rend Fis Acc Lincei 26(Suppl 1):13–23. doi:10.1007/s122010-015-0382-9 Bilham R, Zerbini S (1989) Space geodesy and the global forecast of earthquakes. Eos Transac AGU 70(5):65–73. doi:10.1029/89EO00038 Bostrom RC (1971) Westward displacement of the lithosphere. Nature 234:356–538 Caputo M (1985) A normal space gravity field (with an applications to the tidal effect). Manuscripta Geodaetica 10:245–254 Cheloni D et al (2017) Geodetic model of the 2016 Central Italy earthquake sequence inferred from SAR and GPS data. Geophys Res Lett 44:67–78. doi:10.1002/2017GL073580 Crespi M, Cuffaro M, Doglioni C, Giannone F, Riguzzi F (2007) Space geodesy validation of the global lithospheric flow. Geophys J Int 168:491–506. doi:10.1111/j.1365-246X.2006.03226.x Cuffaro M, Caputo M, Doglioni C (2008) Plate subrotations. Tectonics. doi:10.1029/2007TC002182 DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80 Devoti R et al (2012) The coseiemic and postseismic deformation of the L’Aquila 2009 earthquake from repeated GPS measurements. Ital J Geosci (Boll Soc Geol It) 131(3):348–358. doi:10.3301/ IJG.2012.15 Doglioni C (1990) The global tectonic pattern. J Geodyn 12(1):21–38 Doglioni C (1993) Geological evidence for a global tectonic polarity. J Geol Soc Lond 150:991–1002 Doglioni C, Anderson DL (2015) Top driven asymmetric mantle convection. In: The Interdisciplinary Earth: a volume in honor of Don L. Anderson. Geological Society of America Special, Paper 514, American Geophysical Union Special Publication 71. doi:10.1130/2015.2514(05) Doglioni C, Panza GF (2015) Polarized platetectonics. Adv Geophys 56(3):1–167. doi:10.1016/bs.agph.2014.12.001 Doglioni C, Carminati E, Bonatti E (2003) Rift asymmetry and continental uplift. Tectonics 22(3):1024. doi:10.1029/2002TC001459 Doglioni C, Carminati E, Cuffaro M, Scrocca D (2007) Subduction kinematics and dynamic constraints. Earth Sci Rev 83:125–175. doi:10.1016/j.earscirev.2007.04.001 Doglioni C, Ismail-Zadeh A, Panza G, Riguzzi F (2011a) Lithosphereasthenosphere viscosity contrast and decoupling. Phys. Earth Planet. Int. 189:1–8 Doglioni C, Barba S, Carminati E, Riguzzi F (2011b) Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Int. 184:160–171 Doglioni C, Carminati E, Petricca P, Riguzzi F (2015) Normal fault earthquakes or graviquakes. Sci Rep 5:12110. doi:10.1038/ srep12110 Gordon RG (1995) Present plate motion and plate boundaries. Glob Earth Phys AGU Ref Shelf 1:66–87 Gordon RG, Stein S (1992) Global tectonics and space geodesy. Science 256(5055):333–342. doi:10.1126/science.256.5055.333 Gripp AE, Gordon RG (2002) Young tracks of hotspots and current plate velocities. Geophys J Int 150:321–361 Henderson DM (2001) New visualizations of global tectonic plate motions and plate boundary interactions. Terra Nova 13:70–78 Hung H-K, Rau R-J, Benedetti E, Branzanti M, Mazzoni A, Colosimo G, Crespi M (2017) GPS Seismology for a moderate magnitude earthquake: lessons learned from the analysis of the 31 October 2013 ML 6.4 Ruisui (Taiwan) earthquake. Ann Geophys 60(5):S0553. doi:10.4401/ag-7399 Jin S, van Dam T, Wdowinski S (2013) Observing and understanding the Earth system variation from space geodesy. J Geodyn 72:1–10. doi:10.1016/j.jog.2013.08.001 Knopoff L, Leeds A (1972) Lithospheric momenta and the deceleration of the Earth. Nature 237(12):93–95 Le Pichon X (1968) Sea-floor spreading and continental drift. J Geophys Res 73(12):3661–3697 Mueller II, Zerbini S (1989) The interdisciplinary role of space geodesy, lecture notes in Earth Sciences, vol 22. Springer, Berlin. doi:10.1007/BFb0049637 O’Connell R, Gable CG, Hager B (1991) Toroidal–poloidal partitioning of lithospheric plate motions. In: Sabadini R et al (eds) Glacial isostasy, sea-level and mantle rheology, vol 334. Kluwer Academic Publisher, Dordrecht, pp 535–551 Petricca P, Barba S, Carminati E, Doglioni C, Riguzzi F (2015) Graviquakes in Italy. Tectonophysics 656:202–214. doi:10.1016/j. tecto.2015.07.001 Ricard Y, Doglioni C, Sabadini R (1991) Differential rotation between lithosphere and mantle: a consequence of lateral viscosity variations. J Geophys Res 96:8407–8415 Riguzzi F, Panza G, Varga P, Doglioni C (2010) Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484:60–73. doi:10.1016/j.tecto.2009.06.012 Riguzzi F, Crespi M, Devoti R, Doglioni C, Pietrantonio G, Pisani AR (2012) Geodetic strain rate and earthquake size: new clues for seismic hazard studies. Phys Earth Planet Int 206–207:67–75 Riguzzi F, Crespi M, Devoti R, Doglioni C, Pietrantonio G, Pisani AR (2013) Strain rate relaxation of normal and thrust faults in Italy. Geophys J Int 195:815–820. doi:10.1093/gji/ggt304 Rychert CA, Shearer PM (2009) A global view of the lithosphere-asthenosphere boundary. Science 324(5926):495–498. doi:10.1126/ science.1169754 Rychert CA, Laske G, Harmon N, Shearer PM (2013) Seismic imaging of melt in a displaced Hawaiian plume. Nat Geosci 6:657–660. doi:10.1038/ngeo1878 Rend. Fis. Acc. Lincei 1 3 Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88(B6):4984–4996 Scoppola B, Boccaletti D, Bevis M, Carminati E, Doglioni C (2006) The westward drift of the lithosphere: a rotational drag? Geol Soc Am Bull 118:199–209. doi:10.1029/2004TC001634 Segall P (2010) Earthquake and volcano deformation. Princeton University Press, Princeton Stein S (1993) Space geodesy and plate motions. Contrib Space Geod Geodyn Am Geophys Union Geodyn Series 23:5–20en
dc.description.obiettivoSpecifico1T. Struttura della Terraen
dc.description.journalTypeJCR Journalen
dc.contributor.authorDoglioni, Carloen
dc.contributor.authorRiguzzi, Federicaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Doglioni&Riguzzi.pdf1.74 MBAdobe PDF
Show simple item record

Page view(s)

226
checked on Apr 24, 2024

Download(s)

9
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric