Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11427
DC FieldValueLanguage
dc.date.accessioned2018-03-23T07:39:08Zen
dc.date.available2018-03-23T07:39:08Zen
dc.date.issued2015-10-21en
dc.identifier.urihttp://hdl.handle.net/2122/11427en
dc.description.abstractWe investigate seismic signatures of fracturing in a newly ruptured strike-slip fault by determining the wavefield polarization in the New Zealand Canterbury Plains area and across the Greendale Fault, which was responsible for the 3 September 2010 Darfield Mw 7.1 earthquake. Previous studies suggested that fractured rocks in fault damage zones cause directional amplification and ground motion polarization in the fracture-perpendicular direction as an effect of stiffness anisotropy, and cause velocity anisotropy with shear wave velocity larger in the fracture-parallel component. An array of 14 stations was installed following the Darfield earthquake. We assess polarization both in the frequency and time domains through the individual-station horizontal-to-vertical spectral ratio and covariance matrix analysis, respectively, and compare the results to previously reported anisotropy measurements from shear wave splitting. Stations installed in the Canterbury Plains have an amplification peak between 0.1 and 0.3 Hz for both earthquakes and ambient noise.We relate the amplification to the resonance of a considerable thickness (c. 1 km) of soft sediments lying over the metamorphic bedrock. Analysis of seismic events revealed the existence of another peak in amplification between 2 and 5 Hz at two on-fault stations, which was not visible in the noise analysis. In contrast to the lower frequency peak, the ones between 2 and 5 Hz are more strongly anisotropic, attaining amplitudes up to a factor of 4 in the N52° direction. To interpret this effect we model the fracture pattern in the fault damage zone produced by the fault kinematics. We conclude that the horizontal polarization is orthogonal to extensional fractures, which predominate in the shallow layers (<2 km) with an expected strike of N139°. Fracture orientation is consistent with coseismic surface rupture observations, confirming the reliability of the model. S wave splitting is produced by velocity anisotropy in the entire rock volume crossed along the seismic path; thus, it is affected by deeper material than the amplification study. We explain the rotation of S wave fast component observed by Holt et al. (2013) near the fault in terms of the dominant synthetic cleavages at greater depths (>2 km), expected in N101° direction on the basis of the model. Thus, different fracture distribution at different depths may explain different results for amplification compared to anisotropy. We propose polarization amplification analysis as a complementary method to S wave splitting analysis. Polarization analysis is rapidly computed and robust, and it can be applied to either earthquakes or ambient noise recordings, giving useful information about the predominant fracture patterns at various depths.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Research: Solid Earthen
dc.relation.ispartofseries/120 (2015)en
dc.subjectdirectional amplification,S-wave splitting, Greendale faulten
dc.titleFracture-related wavefield polarization and seismic anisotropy across the Greendale Faulten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber7048–7067en
dc.subject.INGV04.06. Seismologyen
dc.identifier.doi10.1002/2014JB011560en
dc.relation.referencesBalfour, N. J., M. K. Savage, and J. Townend (2005), Stress and crustal anisotropy in Marlborough, New Zealand: Evidence for low fault strength and structure-controlled, Geophys. J. Int., 163, 1073–1086, doi:10.1111/j.1365-246X.2005.02783.x. Bard, P.-Y. (1998), Microtremor measurements: A tool for site effect estimation, in Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, edited by K. Irikura et al., pp. 1251–1279, A.A. Balkema, Rotterdam. Barnes, P. M. (1995), High-frequency sequences deposited during Quaternary sea-level cycles on a deforming continental shelf, north Canterbury, New Zealand, Sediment. Geol., 97, 131–156, doi:10.1016/0037-0738(94)00141-G. Beavan, J., E. Fielding, M. Motagh, S. Samsonov, and N. Donnelly (2011), Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data, Seismol. Res. Lett., 82(6), 789–799, doi:10.1785/gssrl.82.6.789. Beavan, J., M. Mothagh, E. Fielding, N. Donnelly, and D. Collett (2012), Fault slip models of the 2010–2011 Canterbury, New Zealand, earthquakes from geodetic data and observations of postseismic ground deformation, N. Z. J. Geol. Geophys., 55(3), doi:10.1080/ 00288306.2012.697472. Boness, N., and M. D. Zoback (2004), Stress-induced seismic velocity anisotropy and physical properties in the SAFOD pilot hole in Parkfield, CA, Geophys. Res. Lett., 31, L15S17, doi:10.1029/2003GL019020. Boness, N., and M. D. Zoback (2006), Mapping stress and structurally controlled crustal shear velocity anisotropy in California, Geology, 34(10), 825–828, doi:10.1130/G22309.1. Browne, G. H., and T. R. Naish (2003), Facies development and sequence architecture of a Late Quaternary fluvial-marine transition, Canterbury Plains and shelf, New Zealand: Implications for forced regressive deposits, Sediment. Geol., 158, 57–86, doi:10.1016/ S0037-0738(02)00258-0. Caine, S., J. P. Evans, and C. B. Forster (1996), Fault zone architecture and permeability structure, Geology, 24, 1025–1028, doi:10.1130/ 0091-7613(1996)024<1025:FZAAPS>2.3.CO;2. Cochran, E., Y.-G. Li, and J. E. Vidale (2006), Anisotropy in the shallow crust observed around the San Andreas Fault before and after the 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 96(4B), S364–S375, doi:10.1785/0120050804. Cochran, E. S., J. E. Vidale, and Y.-G. Li (2003), Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., 108(B9), 2436, doi:10.1029/2002JB002352. Crampin, S. (1994), The fracture criticality of crustal rocks, Geophys. J. Int., 118(2), 428–438, doi:10.1111/j.1365-246X.1994.tb03974.x. Crampin, S., and D. C. Booth (1985), Shear-wave polarization near the North Anatolian fault—II. Interpretation in terms of crack-induced anisotropy, Geophys. J. R. Astron. Soc., 83, 75–92. Cubrinovsky, M., J. D. Bray, M. Taylor, S. Giorgini, B. Bradley, L. Wotherspoon, and J. Zupan (2011), Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake, Seismol. Res. Lett., 82, 893–904, doi:10.1785/gssrl.82.6.893. Di Giulio, G., F. Cara, A. Rovelli, G. Lombardo, and R. Rigano (2009), Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. Geophys. Res., 114, B10308, doi:10.1029/2009JB006393.Di Giulio, G., A. Rovelli, F. Cara, P. P. Bruno, M. Punzo, and F. Varriale (2013), A controlled-source experiment to investigate the origin of wavefield polarization in fault zones, paper presented at IAHS-IAPSO-IASPEI Joint Assembly, 22–26 July 2013, Gothenburg, Sweden (abstract n. 2843253). do Nascimento, A., R. Pearce, and M. Takeya (2002), Local shear-wave observations in Joao Camara, NE Brazil, J. Geophys. Res., 107(B10), 2232, doi:10.1029/2001JB000560. Falsaperla, S., F. Cara, A. Rovelli, M. Neri, B. Behncke, and V. Acocella (2010), Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: The missing link?, J. Geophys. Res., 115, B11306, doi:10.1029/2010JB007529. Forsyth, P. J., D. J. A. Barrell, and R. Jongens (2008), Geology of the Christchurch area: Institute of Geological and Nuclear Sciences Geological Map 16 scale 1:250,000, 1 sheet, 67 p. text. Ghisetti, F. C., and R. H. Sibson (2012), Compressional reactivation of E–W inherited normal faults in the area of the 2010–2011 Canterbury earthquake sequence, N. Z. J. Geol. Geophys., 55(3), 177–184, doi:10.1080/00288306.2012.674048. Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2011), The Darfield (Canterbury, New Zealand) Mw 7.1 earthquake of September 2010: A preliminary seismological report, Seismol. Res. Lett., 82, 379–386, doi:10.1785/gssrl.82.3.378. Guidotti, R., M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri (2011), Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake, Seismol. Res. Lett., 82, 767–782, doi:10.1785/gssrl.82.6.767. Hampton, S. J., and J. W. Cole (2008), Lyttelton Volcano, Banks Peninsula, New Zealand: Primary volcanic landforms and eruptive centre identification, Geomorphology, 104, 284–298, doi:10.1016/j.geomorph.2008.09.005. Hanks, T. C., and W. H. Bakun (2002), A bilinear source-scaling model for M-log A observations of continental earthquakes, Bull. Seismol. Soc. Am., 92, 1841–1846, doi:10.1785/0120010148. Hanks, T. C., andW. H. Bakun (2008),M-log A observations for recent large earthquakes, Bull. Seismol. Soc. Am., 98, 490–494, doi:10.1785/0120070174. Harding, T. P. (1974), Petroleum traps associated with wrench faults, Bull. Am. Assoc. Petrol. Geol., 60, 365–378. Harding, T. P., and J. D. Lowell (1979), Structural styles, their plate tectonic habitats and hydrocarbon traps in petroleum provinces, Bull. Am. Assoc. Petrol. Geol., 63, 1016–1058. Herzer, R. H. (1979), Banks Sediments. Coastal Chart Series 1:200 000 Sediments, New Zealand Oceanographic Institute, Dep. of Scientific and Industrial Research, Wellington, New Zealand. Hobbs, B. E., W. D. Means, and P. P. Williams (1976), An Outline of Structural Geology, 571 pp., Wiley, New York. Holden, C. (2011), Kinematic source model of the 22 February 2011 Mw 6.2 Christchurch earthquake using strong motion data, Seismol. Res. Lett., 82, 783–788, doi:10.1785/gssrl.82.6.783. Holt, R. A., M. K. Savage, J. Townend, E. M. Syracuse, and C. H. Thurber (2013), Crustal stress and fault strength in the Canterbury Plains, New Zealand, Earth Planet. Sci. Lett., 383(173–181), 2013, doi:10.1016/j.epsl.2013.09.041. Jongens, R., D. Barrell, J. K. Campbell, and J. R. Pettinga (2012), Faulting and folding beneath the Canterbury Plains identified prior to the 2010 emergence of the Greendale Fault, N. Z. J. Geol. Geophys., 55, doi:10.1080/00288306.2012.674050. Jurkevics, A. (1988), Polarization analysis of three component array data, Bull. Seismol. Soc. Am., 78, 1725–1743. Kaiser, A., et al. (2012), The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report, N. Z. J. Geol. Geophys., 55(1), 67–90, doi:10.1080/00288306.2011.641182. Kanasewich, E. R. (1981), Time Sequence Analysis in Geophysics, 477 pp., Univ. of Alberta press, Edmonton. Kane, D. L., P. M. Shearer, B. P. Goertz-Allmann, and F. L. Vernon (2013), Rupture directivity of small earthquakes at Parkfield, J. Geophys. Res. Solid Earth, 118, 212–221, doi:10.1029/2012JB009675. Laird, M. G., and J. D. Bradshaw (2004), The break-up of a long-term relationship: The Cretaceous separation of New-Zealand from Gondwana, Gondwana Res., 7(1), 273–286, doi:10.1016/S1342-937X(05)70325-7. Li, Y.-G., G. P. De Pascale, M. C. Quigley, and D. M. Gravley (2014), Fault damage zones of the M7.1 Darfield and M6.3 Christchurch earthquakes characterized by fault-zone trapped waves, Tectonophysics, 618, 79–101, doi:10.1016/j.tecto.2014.01.029. Liu, Y., S. Crampin, and I. Main (1997), Shear-wave anisotropy: Spatial and temporal variations in time delays at Parkfield, Central California, Geophys. J. Int., 130, 771–785, doi:10.1111/j.1365-246X.1997.tb01872.x. MacKinnon, T. C. (1983), Origin of the Torlesse terrane and coeval rocks, South Island, New Zealand, Geol. Soc. Am. Bull., 94, 967–985, doi:10.1130/0016-7606(1983)94<967:OOTTTA>2.0.CO;2. Mandl, G. (2000), Faulting in Brittle Rocks, 434 pp., Springer, London. Moar, N. T., and M. Gage (1973), Interglacial deposits in Joyces Stream (S74), Waimakariri valley, Canterbury, N. Z. J. Geol. Geophys., 16, 321–331, doi:10.1080/00288306.1973.10431361. Nur, A., and G. Simmons (1969), Stress-induced velocity anisotropy in rock: An experimental study, J. Geophys. Res., 74(27), 6667–6674, doi:10.1029/JB074i027p06667. Orense, R. P., T. Kiyota, S. Yamada, M. Cubrinovski, Y. Hosono, M. Okamura, and S. Yasuda (2011), Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes, Seismol. Res. Lett., 82, 905–926, doi:10.1785/gssrl.82.6.905. Panzera, F., M. Pischiutta, G. Lombardo, C. Monaco, and A. Rovelli (2014), Wavefield polarization in fault zones of the western flank of Mt. Etna: Observations and fracture orientation modelling, Pageoph, doi:10.1007/s00024-014-0831-x. Paulssen, H. (2004), Crustal anisotropy in southern California fromlocal earthquake data, Geophys. Res. Lett., 31, L01601, doi:10.1029/2003GL018654. Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian Fault, Geophys. J. Int., 159, 253–274, doi:10.1111/j.1365-246X.2004.02379.x. Pischiutta, M., F. Salvini, J. Fletcher, A. Rovelli, and Y. Ben-Zion (2012), Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: Dominant fault-high-angle polarization and fault-induced cracks, Geophys. J. Int., 188(3), 1255–1272, doi:10.1111/ j.1365-246X.2011.05319.x. Pischiutta, M., A. Rovelli, F. Salvini, G. Di Giulio, and Y. Ben-Zion (2013), Directional resonance variations across the Pernicana fault, Mt. Etna, in relation to brittle deformation fields, Geophys. J. Int., 193, 986–996, doi:10.1093/gji/ggt03. Pischiutta, M., M. Pastori, L. Improta, F. Salvini, and A. Rovelli (2014), Orthogonal relation between wavefield polarization and fast S-wave direction in the Val d’Agri region: An integrating method to investigate rock anisotropy, J. Geophys. Res. Solid Earth, 119, 1–13, doi:10.1002/ 2013JB010077. Quigley, M., et al. (2010), Surface rupture of the Greendale Fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand: Initial findings, Bull. New Zeal. Soc. Earthquake Eng., 43(4), 236–242, doi:10.1130/G32528.1. Quigley, M., R. Van Dissen, N. Litchfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, E. Bilderback, and D. Noble (2012), Surface rupture during the 2010 Mw 7.1 Darfield (Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard analysis, Geology, 40, 55–58, doi:10.1130/G32528.1 Riedel, W. (1929), Zur mechanik geologischer Brucherscheinungen, Zentralblatt. Miner. Geol. Palaont. B, 354–368. Salvini, F., A. Billi, and D. U. Wise (1999), Strike-slip fault-propagation cleavage in carbonate rocks: The Mattinata Fault Zone, Southern Apennines, Italy, J. Struct. Geol., 21, 1731–1749, doi:10.1016/S0191-8141(99)00120-0. Savage, M., F.-C. Lin, and J. Townend (2013), Ambient noise cross-correlation observations of fundamental and higher-mode Rayleigh wave propagation governed by basement resonance, Geophys. Res. Lett., 40, 3556–3561, doi:10.1002/grl.50678. Sewell, R. J. (1988), Late Miocene volcanic stratigraphy of central Banks Peninsula, Canterbury, New Zealand, N. Z. J. Geol. Geophys., 31, 41–64, doi:10.1080/00288306.1988.10417809. Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress control of an evolving strike-slip fault system during the 2010–2011 Canterbury, New Zealand, earthquake sequence, Seismol. Res. Lett., 82, 824–832, doi:10.1785/gssrl.82.6.824. Spudich, P., M. Hellweg, and H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: Implications for mainshock motions, Bull. Seismol. Soc. Am., 86, 193–208. Syracuse, E. M., R. A. Holt, M. K. Savage, J. H. Johnson, C. H. Thurber, K. Unglert, K. N. Allan, S. Karalliyadda, and M. Henderson (2012), Temporal and spatial evolution of hypocentres and anisotropy from the Darfield aftershock sequence: Implications for fault geometry and age, N.Z. J. Geol. Geophys., 55(3), 287–293, doi:10.1080/00288306.2012.690766. Syracuse, E. M., C. H. Thurber, C. J. Rawles, M. K. Savage, and S. Bannister (2013), High-resolution relocation of aftershocks of the Mw 7.1 Darfield, New Zealand, earthquake and implications for fault activity, J. Geophys. Res. Solid Earth, 118, 4184–4195, doi:10.1002/jgrb.50301. Townend, J., S. Sherburn, R. Arnold, C. Boese, and L. Woods (2012), Three-dimensional variations in present-day tectonic stress along the Australia–Pacific plate boundary in New Zealand, Earth Planet. Sci. Lett., 353–354, 47–59, doi:10.1016/j.epsl.2012.08.003. Turcotte, D., and G. Schubert (1982), Geodynamics; Applications of Continuum Physics to Geological Problems, 450 pp., John Wiley, New York. Van Dissen, R., et al. (2011), Surface rupture displacement on the Greendale Fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand, and its impact on man-madestructures, Proc. Ninth Pac. Conf. Earthquake Eng., pp. 186–193, Building an Earthquake- Resilient Society, Auckland, New Zealand, 14-16 April. Walsh, J. J., and J. Watterson (1988), Analysis of the relationship between displacements and dimensions of faults, J. Struct. Geol., 10(3), 239–247, doi:10.1016/0191-8141(88)90057-0. Wessel, P., and W. H. F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79(47), 579. Zhang, Z., and S. Y. Schwartz (1994), Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas Fault System, J. Geophys. Res., 99(B5), 9651–9661, doi:10.1029/94JB00241. Zinke, J. C., and M. D. Zoback (2000), Structure-related and stress-induced shear-wave velocity anisotropy: Observations from microearthquakes near the Calaveras fault in central California, Bull. Seismol. Soc. Am., 90(5), 1305–1312, doi:10.1785/0119990099.en
dc.description.obiettivoSpecifico4T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.contributor.authorPischiutta, Martaen
dc.contributor.authorSavage, M. K.en
dc.contributor.authorHolt, R. A.en
dc.contributor.authorSalvini, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations 20

11
checked on Feb 10, 2021

Page view(s)

239
checked on Apr 27, 2024

Download(s)

101
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric