Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11265
DC FieldValueLanguage
dc.date.accessioned2018-03-16T13:27:05Z-
dc.date.available2018-03-16T13:27:05Z-
dc.date.issued2016-03-
dc.identifier.urihttp://hdl.handle.net/2122/11265-
dc.descriptionThis article has been accepted for publication in Geophysical Journal Internationa ©: 2016 Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.en_US
dc.description.abstractWe propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.en_US
dc.description.sponsorshipItalian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST(Grant agreement 603389) projects, Italian FIRB-‘Futuro in Ricerca’ project ‘ByMuR’ (Ref. RBFR0880SR), INGV-DPC Agreement, Annex B2en_US
dc.language.isoengen_US
dc.relation.ispartofGeophysical Journal Internationalen_US
dc.relation.ispartofseries/205 (2016)en_US
dc.subjectProbabilistic forecastingen_US
dc.subjectTsunamisen_US
dc.subjectEarthquake interactionen_US
dc.subjectEuropeen_US
dc.titleQuantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)en_US
dc.typearticle-
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumber1780–1803en_US
dc.identifier.URLhttps://academic.oup.com/gji/article/205/3/1780/656379en_US
dc.subject.INGV04.07. Tectonophysicsen_US
dc.subject.INGV05.06. Methodsen_US
dc.subject.INGV05.08. Risken_US
dc.subject.INGV05.01. Computational geophysicsen_US
dc.subject.INGV04.06. Seismologyen_US
dc.identifier.doi10.1093/gji/ggw107en_US
dc.relation.referencesAbrahamson, N.A. & Bommer, J.J., 2005. Probability and uncertainty in seismic hazard analysis, Earthq. Spectra, 21, 603–607. Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K. & Shuto, N., 2007. Logic-tree approach for Probabilistic Tsunami Hazard Analysis and its applications to the Japanese coasts, Pure appl. Geophys., 164, 577–592. Baker, J.W. & Cornell, C.A., 2008. Uncertainty propagation in probabilistic seismic loss estimation, Struct. Saf., 30, 236–252. Baptista, M.A. & Miranda, J.M., 2009. Revision of the Portuguese catalog of tsunamis, Nat. Hazards Earth Syst. Sci., 9(1), 25–42. Basili, R., Tiberti, M.M., Kastelic, V, Romano, F., Piatanesi, A., Selva, J. & Lorito, S., 2013. Integrating geologic fault data into tsunami hazard studies, Nat. Hazards Earth Syst. Sci., 13, 1025–1050. Bazzurro, P. & Cornell, C., 1999. Disaggregation of seismic hazard, Bull seism. Soc. Am., 89(2), 501–520. Bilek, S.L. & Lay, T., 1999. Rigidity variations with depth along interplate megathrust faults in subduction zones, Nature, 400, 443–446. Bommer, J.J. & Scherbaum, F., 2008. The use and misuse of logic trees in Probabilistic Seismic Hazard Analysis, Earthq. Spectra, 24, 997–1009. Carrier, G.F. & Greenspan, H.P., 1958. Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4, 97–109. Chiarabba, C., De Gori, P. & Speranza, F., 2008. The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution, Earth planet. Sci. Lett., 268, 408–423. Corti, G., Cuffaro, M., Doglioni, C., Innocenti, F. & Manetti, P., 2006. Coexisting geodynamic processes in the Sicily Channel, GSA Special Papers, 409, 83–96. Devoti, R., Riguzzi, F., Cuffaro, M. & Doglioni, C., 2008. New GPS constraints on the kinematics of the Apennines subduction, Earth planet. Sci. Lett., 273, 163–174. Ekstr¨om, G., Nettles, M. & Dziewo´nski, A.M., 2012. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes, Phys. Earth planet. Inter., 200–201, 1–9. Field, E.H., Gupta, N., Gupta, V., Blanpied, M., Maechling, P. & Jordan, T.H., 2005. Hazard calculations for the WGCEP-2002 earthquake forecast using OpenSHA and distributed object technologies, Seismol. Res. Lett., 76, 161–167. Field, E.H. et al., 2014. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—the time-independent model, Bull. seism. Soc. Am., 104, 1122–1180. Geist, E.L., 1999. Local tsunamis and earthquake source parameters, Adv. Geophys., 39, 117–209. Geist, E.L., 2009. Phenomenology of tsunamis: statistical properties from generation to runup, Adv. Geophys., 51, 107–169. Geist, E.L. & Bilek, S.L., 2001. Effect of depth-dependent shear modulus on tsunami generation along subduction zones, Geophys. Res. Lett., 28, 1315–1318. Geist, E.L. & Lynett, P.J., 2014. Source processes for the probabilistic assessment of tsunami hazards, Oceanography, 27(2), 86–93. Geist, E.L. & Oglesby, D.D., 2014. Tsunami: stochastic models of occurrence and generation mechanisms, in Encyclopedia of Complexity and Systems Science, pp. 1–29, ed. Meyers, A., Springer. Geist, E.L. & Parsons, T., 2006. Probabilistic analysis of tsunami hazards, Nat. Hazards, 37, 277–314. Geist, E.L.&Parsons, T., 2014. Undersampling power-lawsize distributions: effect on the assessment of extreme natural hazards, Nat. Hazards, 72, 565–595. Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B., 1995. Bayesian Data Analysis, CRC. Gesret, A., Laigle, M., Diaz, J., Sachpazi, M., Charalampakis, M. & Hirn, A., 2011. Slab top dips resolved by teleseismic converted waves in the Hellenic subduction zone, Geophys. Res. Lett., 38, L20304, doi:10.1029/2011GL048996. Giardini,D. et al., 2013. Seismic hazard harmonization in Europe (SHARE), doi:10.12686/SED-00000001-SHARE. Gonz´alez, F.I. et al., 2009. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources, J. geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Gonzalez Vida, J.M. et al., 2015. Tsunami-HySEA: a GPU based model for the Italian candidate tsunami service provider, in EGU General Assembly 2015, Vienna, EGU2015-13797. Grezio, A., Marzocchi, W., Sandri, L. & Gasparini, P., 2010. A Bayesian procedure for Probabilistic Tsunami Hazard Assessment, Nat. Hazards 53, 159–174. Grezio, A., Sandri, L.,Marzocchi,W., Argnani, A., Gasparini, P. & Selva, J., 2012. Probabilistic Tsunami Hazard Assessment for Messina Strait Area (Sicily - Italy), Nat. Hazards, 64, 329–358. Gr¨unthal, G. & Wahlstr¨om, R., 2012. The European–Mediterranean Earthquake Catalogue (EMEC) for the last millennium, J. Seismol., 16(3), 535–570. Gr¨unthal, G., Arvidsson, R. & Bosse, C., 2010. Earthquake Model for the European – Mediterranean Region for the Purpose of GEM1, Scientific Technical Report STR10/04. Hiemer, S., Woessner, J., Basili, R., Danciu, L., Giardini, D. & Wiemer, S., 2014. A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe, Geophys. J. Int., 198, 1159–1172. Horspool, N.N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D.H., Kongko, W., Cipta, A. & Bustaman, B., 2014. A probabilistic tsunami hazard assessment for Indonesia, Nat. Hazards Earth Syst. Sci., 14, 3105– 3122. Kagan, Y.Y., 2002a. Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 540–541. Kagan, Y.Y., 2002b. Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754. Kagan, Y.Y., 2003. Accuracy of modern global earthquake catalogs, Phys. Earth planet. Inter., 135(2–3), 173–209. Kajiura, K., 1963. The leading wave of a tsunami, Bull. Earthq. Res. Inst. Univ. Tokyo, 41, 535–571. Keller,M., Pasanisi, A., Marcilhac, M.,Yalamas, T., Secanell, R.&Senfaute, G., 2014.ABayesian methodology applied to the estimation of earthquake recurrence parameters for seismic hazard assessment, Qual. Reliab. Eng. Int., 30, 921–933. Knighton, J. & Bastidas, L.A., 2015. A proposed probabilistic seismic tsunami hazard analysis methodology, Nat. Hazards, 78, 699–723. Laske, G., Masters., G., Ma, Z. & Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust, Geophys. Res. Abstr., 15, Abstract EGU2013-2658. Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H. & Rushing, T.M., 2012. Depth-varying rupture properties of subduction zone megathrust faults, J. geophys. Res. 117, B04311, doi:10.1029/2011JB009133. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M.M. & Piatanesi, A., 2015. Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps, Geophys. J. Int., 200, 574–588. Løvholt, F., Glimsdal, S., Harbitz, C.B., Zamora, N., Nadim, F., Peduzzi, P., Dao, H. & Smebye, H., 2012a. Tsunami hazard and exposure on the global scale, Earth-Sci. Rev., 110 (1–4), 58–73. Løvholt, F., K¨uhn, D., Bungum, H., Harbitz, C.B. & Glimsdal, S., 2012b. Historical tsunamis and present tsunami hazard in eastern Indonesia and the southern Philippines, J. geophys. Res., 117, B09310, doi:10.1029/2012JB009425. Løvholt, F., Lynett, P. & Pedersen, G., 2013. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities, Nonlinear Process. Geophys., 20, 379–395. Marzocchi, W., Zechar, J.D. & Jordan, T.H., 2012. Bayesian forecast evaluation and ensemble earthquake forecasting, Bull. seism. Soc. Am., 102, 2574–2584. Marzocchi,W. & Jordan, T.H., 2014. Testing for ontological errors in probabilistic forecastingmodels of natural systems, Proc. Natl. Acad. Sci. USA, 85, 955–959. Marzocchi, W., Taroni, M. & Selva, J., 2015. Accounting for epistemic uncertainty in PSHA: Logic Tree and ensemble modeling, Bull. seism. Soc. Am., 105(4), 2151–2159. Miranda, J.M., Baptista, M.A. & Omira, R., 2014. On the use of Green’s summation for tsunami waveform estimation: a case study, Geophys. J. Int., 199(1), 459–464. Mitsoudis, D.A., Flouri, E.T., Chrysoulakis, N., Kamarianakis, Y., Okal, E. & Synolakis, C.E., 2012. Tsunami hazard in the southeast Aegean Sea, Coast. Eng., 60, 136–148. Molinari, I., Tonini, R., Piatanesi, A., Lorito, S., Romano, F., Melini, D., Gonzalez Vida, J.M., Macias, J., Castro, M. & de la Asuncion, M. (submitted). Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database. Musson, R.M.W., 2005. Against fractiles, Earthq. Spectra, 21, 887–891. Musson, R.M.W., 2012. On the nature of logic trees in probabilistic seismic hazard assessment, Earthq. Spectra, 28, 1291–1296. Newhall, C.&Hoblitt, R., 2002. Constructing event trees for volcanic crises, Bull. Volcanol., 64(1), 3–20. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. seism. Soc. Am., 75, 1135–1154. Omira, R., Baptista, M.A. & Matias, L., 2015. Probabilistic tsunami hazard in the Northeast Atlantic from near- and far-field tectonic sources, Pure appl. Geophys., 172(3), 901–920. Ozel, N.M., Necmioglu, O., Yalciner, A.C., Kalafat, D. & Erdik, M., 2011. Tsunami hazard in the Eastern Mediterranean and its connected seas: toward a tsunami warning center in Turkey, Soil Dyn. Earthq. Eng., 31, 598–610. Parsons, T.&Geist, E.L., 2009. Tsunami probability in theCaribbean region, Pure appl. Geophys., 165, 2089–2116. Pat´e-Cornell, M.E., 1996. Uncertainties in risk analysis: six levels of treatment, Reliab. Eng. Syst. Saf., 54, 95–111. Polet, J. & Kanamori, H., 2009. Tsunami earthquakes, in Encyclopedia of Complexity and Systems Science, pp. 9577–9592, ed. Meyers, A., Springer. Pondrelli, S., Salimbeni, S., Morelli, A., Ekstr¨om, G., Postpischl, L., Vannucci, G. & Boschi, E., 2011. European–Mediterranean Regional Centroid Moment Tensor catalog: solutions for 2005–2008, Phys. Earth planet. Inter., 185(3–4), 74–81. Reilinger, R. et al., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. geophys. Res., 111, B05411, doi:10.1029/2005JB004051. Romano, F. et al., 2014. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data, Sci. Rep., 4, 5631, doi:10.1038/srep05631. Rong, Y., Jackson, D.D., Magistrale, H. & Goldfinger, C., 2014. Magnitude limits of subduction zone earthquakes, Bull. seism. Soc. Am., 104(5), 2359–2377. Saaty, T.L., 2008. Decision making with the analytic hierarchy process, Int. J. Serv. Sci., 1(1), 83–98. Selva, J. & Marzocchi, W., 2004. Focal parameters, depth estimation and plane selection of the worldwide shallow seismicity with Ms ≥ 7.0 for the period 1900–1976, Geochem. Geophys. Geosyst., 5, Q05005, doi:10.1029/2003GC000669. Selva, J. & Sandri, L., 2013. Probabilistic Seismic Hazard Assessment: Combining Cornell-like approaches and data at sites through Bayesian inference, Bull. seism. Soc. Am., 103(3), 1709–1722. Scherbaum, F. & Kuehn, N.M., 2011. Logic tree branch weights and probabilities: Summing up to one is not enough, Earthq. Spectra, 27, 1237– 1251. Sørensen,M.B., Spada, M., Babeyko, A.,Wiemer, S. & Gr¨unthal, G., 2012. Probabilistic tsunami hazard in the Mediterranean Sea, J. geophys. Res., 117, B01305, doi:10.1029/2010JB008169. SSHAC, Senior Seismic Hazard Analysis Committee, 1997. Recommendations for Probabilistic Seismic Hazard Analysis: guidance on uncertainty and use of experts, U.S. Nuclear Regulatory Commission, U.S. Dept. of Energy, Electric Power Research Institute; NUREG/CR-6372, UCRL-ID- 122160, vol. 1–2. SSHAC, Senior Seismic Hazard Analysis Committee, 2012. Practical implementation guidelines for SSHAC Level 3 and 4 hazard studies, U.S. Nuclear Regulatory Commission, U.S. Dept. of Energy, Electric Power Research Institute; NUREG–2117. Stirling, M.W. et al., 2012. National seismic hazard model for New Zealand: 2010 update, Bull. seism. Soc. Am., 102, 1514–1542. Strasser, F.O., Arango, M.C. & Bommer, J.J., 2010. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude, Seismol. Res. Lett., 81, 941–950. Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G.M. & Boschi, E., 2011. Seismic hazard assessment (2003–2009) for the Italian building code, Bull. seism. Soc. Am., 101, 1885–1911. Synolakis, C.E., 1987. The run-up of solitary waves, J. Fluid Mech., 185, 523–545. Synolakis, C.E., 1991. Green’s law and the evolution of solitary waves, Phys. Fluids A, 3(3), 490–492. Thio, H.K. & Li, W., 2015. Probabilistic Tsunami Hazard Analysis of the Cascadia subduction zone and the role of epistemic uncertainties and aleatory variability, in 11th Canadian Conference on Earthquake Engineering, Victoria, BC, 21–24 July 2015. Thio, H.K., Somerville, P.G. & Polet, J., 2010. Probabilistic tsunami hazard in California, Pacific Earthquake Engineering Research Center Report, 108, 331. Tiberti, M., Lorito, S., Basili, R., Kastelic, V., Piatanesi, A. & Valensise, G., 2008. Scenarios of earthquake-generated tsunamis for the Italian coast of the Adriatic Sea, Pure appl. Geophys., 165, 2117– 2142. TPSWG Tsunami Pilot Study Working Group, 2006. Seaside, Oregon Tsunami Pilot Study—modernization of FEMA flood hazard maps. NOAA OAR Special Report, NOAA/OAR/PMEL, Seattle, WA, 94 pp. + 7 appendices. Tsushima, H., Hino, R., Ohta, Y., Iinuma, T. & Miura, S., 2014. tFISH/RAPiD: rapid improvement of near-field tsunami forecasting based on offshore tsunami data by incorporating onshore GNSS data, Geophys. Res. Lett., 41, 3390–3397. UNISDR, 2015. Making development sustainable: the future of disaster risk management. Global Assessment Report on Disaster Risk Reduction, United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland. Wei,Y., Thio, H.K., Chock, G., Titov,V.&Moore, C., 2015. Development of probabilistic tsunami design maps along the U.S.West Coast for ASCE7, in 11th Canadian Conference on Earthquake Engineering, Victoria, BC, 21–24 July 2015. Wells, D.L. & Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. seism. Soc. Am., 84(4), 974–1002.en_US
dc.description.obiettivoSpecifico5T. Modelli di pericolosità sismica e da maremotoen_US
dc.description.journalTypeJCR Journalen_US
dc.contributor.authorSelva, Jacopo-
dc.contributor.authorTonini, Roberto-
dc.contributor.authorMolinari, Irene-
dc.contributor.authorTiberti, Mara Monica-
dc.contributor.authorRomano, Fabrizio-
dc.contributor.authorGrezio, Anita-
dc.contributor.authorMelini, Daniele-
dc.contributor.authorPiatanesi, Alessio-
dc.contributor.authorBasili, Roberto-
dc.contributor.authorLorito, Stefano-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
22_Selva_etal2016_GJI.pdfMain article13.31 MBAdobe PDFView/Open
22_Selva_et_al_AppendixA_figCorr.pdfAppendix4.03 MBAdobe PDFView/Open
Show simple item record

Page view(s)

28
checked on Feb 15, 2019

Download(s)

30
checked on Feb 15, 2019

Google ScholarTM

Check

Altmetric