Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/11134
DC FieldValueLanguage
dc.date.accessioned2018-03-12T11:12:01Zen
dc.date.available2018-03-12T11:12:01Zen
dc.date.issued2017-09en
dc.identifier.urihttp://hdl.handle.net/2122/11134en
dc.description.abstractDykes at the Vicuña Pampa Volcanic Complex, which are mostly basaltic (trachy)-andesite and (trachy)-andesite, are exposed at the base and along the walls of a large depression resulting from intense degradation. Dykes intruding stiff layers (lavas, plugs and necks) are thin, mostly dip >60° and have coherent textures, whereas dykes intruding more compliant materials (breccias and conglomerates) tend to be thicker, have lower dips and have coherent, brecciated or mixed textures (coherent and brecciated textural domains in a single or compound dyke). Single dykes with brecciated and mixed textures are only found intruding near-surface units. Dykes with mixed textures always have sharp contacts between domains. Dykes with sinuous domain contacts and enclaves of one domain inside the other are interpreted as resulting from dyke arrest, partial cooling and reinjection of new magma. Dykes with straight domain contacts are considered to be compound dykes, with a new dyke intruding along the margins of an older, solidified one.en
dc.language.isoEnglishen
dc.relation.ispartofTerra Novaen
dc.relation.ispartofseries/29 (2017)en
dc.subjectdykeen
dc.subjectVicuña Pampaen
dc.titleRemarkable variability in dyke features at the Vicuña Pampa Volcanic Complex, Southern Central Andesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber224-232en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1111/ter.12268en
dc.relation.referencesCarniel, R., Guzmán, S., & Neri, M. (2017). FIERCE: FInding volcanic ERuptive CEnters by a grid-searching algorithm in R. Bulletin of Volcanology, 79, 19. CrossRef | Web of Science® | ADS Browning, J., & Gudmundsson, A. (2015). Caldera faults capture and deflect inclined sheets: An alternative mechanism of ring dike formation. Bulletin of Volcanology, 77, 4. CrossRef | Web of Science® Times Cited: 10 | ADS Daniels, K. A., Kavanagh, J. L., Menand, T., & Sparks, S. J. (2012). The shapes of dikes: Evidence for the influence of cooling and inelastic deformation. GSA Bulletin, 124(7/8), 1102–1112. CrossRef | Web of Science® Times Cited: 19 | ADS Delcamp, A., Troll, V. R., van Wyk de Vries, B., Carracedo, J. C., Petronis, M. S., Pérez-Torrado, F. J., & Deegan, F. M. (2012). Dykes and structures of the NE rift of Tenerife, Canary Islands: A record of stabilisation and destabilisation of ocean island rift zones. Bulletin of Volcanology, 74, 963–980. CrossRef | Web of Science® Times Cited: 13 | ADS Ferrari, L., Garduño, V. H., & Neri, M. (1991). I dicchi della Valle del Bove, Etna: Un metodo per stimare le dilatazioni di un apparato vulcanico. Memorie - Società Geologica Italiana, 47, 495–508. Gautneb, H., & Gudmundsson, A. (1992). Effect of local and regional stress fields on sheet emplacement in West Iceland. Journal of Volcanology and Geothermal Research, 51, 339–356. CrossRef | Web of Science® Times Cited: 40 | ADS Geshi, N., Kusumoto, S., & Gudmundsson, A. (2010). The geometric difference between non-feeders and feeder dikes. Geology, 38, 195–198. CrossRef | Web of Science® Times Cited: 55 | ADS Geshi, N., Kusumoto, S., & Gudmundsson, A. (2012). Effects of mechanical layering of host rocks on dike growth and arrest. Journal of Volcanology and Geothermal Research, 223–224, 74–82. CrossRef | CAS | Web of Science® Times Cited: 19 | ADS Geshi, N., & Neri, M. (2014). Dynamic feeder dyke systems in basaltic volcanoes: The exceptional example of the 1809 Etna eruption (Italy). Frontiers in Earth Science, 2, 13. CrossRef | ADS Geshi, N., & Oikawa, T. (2014). The spectrum of basaltic feeder systems from effusive lava eruption to explosive eruption at Miyakejima volcano, Japan. Bulletin of Volcanology, 76, 797. CrossRef | Web of Science® Times Cited: 1 | ADS Goto, Y., Nakada, S., Kurokawa, M., Shimano, T., Sugimoto, T., Sakuma, S., … Uto, K. (2008). Character and origin of lithofacies in the conduit of Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 175, 45–59. CrossRef | CAS | Web of Science® Times Cited: 15 | ADS Gudmundsson, A. (1995). Infrastructure and mechanics of volcanic systems in Iceland. Journal of Volcanology and Geothermal Research, 64, 1–22. CrossRef | CAS | Web of Science® Times Cited: 181 | ADS Gudmundsson, A., & Brenner, J. S. (2005). On the conditions of sheet injections and eruptions in stratovolcanoes. Bulletin of Volcanology, 67, 768–782. CrossRef | Web of Science® Times Cited: 36 | ADS Gudmundsson, A. (2006). How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Science Reviews, 79, 1–31. CrossRef | Web of Science® Times Cited: 189 | ADS Gudmundsson, A. (2011). Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 50–64. CrossRef | Web of Science® Times Cited: 88 | ADS Gudmundsson, A., Kusumoto, S., Simmenes, T. H., Philipp, S. L., Larsen, B., & Lotveit, I. F. (2012). Effects of overpressure variations on fracture apertures and fluid transport. Tectonophysics, 581, 220–230. CrossRef | Web of Science® Times Cited: 9 | ADS Guzmán, S., Strecker, M. R., Martí, J., Petrinovic, I. A., Schildgen, T. F., Grosse, P., … Sudo, M. (2017). Construction and degradation of a broad volcanic massif: The Vicuña Pampa volcanic complex, southern Central Andes, NW Argentina. GSA Bulletin, 129(5-6), 750–766. https://doi.org/10.1130/b31631.1 CrossRef | Web of Science® | ADS Kavanagh, J., & Sparks, R. S. J. (2011). Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets. Journal of the Geological Society of London, 168, 965–978. CrossRef | Web of Science® Times Cited: 32 Keating, G. N., Valentine, G. A., Krier, D. J., & Perry, F. V. (2008). Shallow plumbing system for small-volume basaltic volcanoes. Bulletin of Volcanology, 70, 563–582. CrossRef | Web of Science® Times Cited: 76 | ADS Le Maitre, R., Baterman, P., Dudek, A., Keller, J., Lameyre Le Bas, M., Sabine, P., … Zanettin, B. (1989). A classification of igneous rocks and glossary of terms. Oxford: Blackwell. Lister, J. R., & Kerr, R. C. (1991). Fluid-mechanical models of crack propagation and their application to magma transport in dykes. Journal of Geophysical Research, 96, 10049–10077. Wiley Online Library | Web of Science® Times Cited: 435 Mathieu, L., van Wyk de Vries, B., Holohan, E. P., & Troll, V. R. (2008). Dykes, cups, saucers and sills: Analogue experiments on magma intrusion into brittle rocks. Earth and Planetary Science Letters, 27(1–4), 1–13. CrossRef | CAS | Web of Science® Times Cited: 67 | ADS McDonough, W. F., & Sun, S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253. CrossRef | CAS | Web of Science® Times Cited: 5125 | ADS Petronis, M. S., Delcamp, A., & van Wyk de Vries, B. (2013). Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and Paleomagnetic data. Bulletin of Volcanology, 75, 753. CrossRef | Web of Science® Times Cited: 13 | ADS Pinel, V., & Jaupart, C. (2000). The effect of edifice load onmagma ascent beneath a volcano. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 358, 1515–1532. CrossRef | Web of Science® Times Cited: 83 | ADS Rivalta, E., Böttinger, M., Schnese, M., & Dahm, T. (2013). Supplement to: Buoyancy-driven fracture ascent: Experiments in layered gelatine. Retrieved from http://www.youtube.com/watch?v=8y4U1vrk-gg Rivalta, E., Taisne, B., Bunger, A., & Katz, R. (2015). A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics, 638, 1–42. CrossRef | Web of Science® Times Cited: 38 | ADS Rossello, E. A. (1980). Nuevo Complejo Volcánico Vicuña Pampa, departamento Belén, provincia de Catamarca. Revista de la Asociación Geológica Argentina, 35(3), 436–438. Rossello, E. A., & Jones, J. P. (1999). Potencial geominero de la caldera Vicuña Pampa (27°00'S-67°00'W), Catamarca, in Proceedings, Congreso Geológico Argentino, 14th, Salta, 2, 294-297. Tuffen, H., Dingwell, D. B., & Pinkerton, H. (2003). Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology, 31, 1089–1092. CrossRef | Web of Science® Times Cited: 187 | ADS Vezzoli, L., & Corazzato, C. (2016). Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy). Journal of Volcanology and Geothermal Research, 318, 55–72. CrossRef | CAS | Web of Science® Times Cited: 1 | ADS Viramonte, J. G., & Petrinovic, I. A. (1999). La caldera de Culampajá: una caldera basáltica en la Puna Austral, in Proceedings, Congreso Geológico Argentino, 14th, Salta, 2, 235.en
dc.description.obiettivoSpecifico1V. Storia eruttivaen
dc.description.obiettivoSpecifico2V. Struttura e sistema di alimentazione dei vulcanien
dc.description.journalTypeJCR Journalen
dc.contributor.authorGuzmán, Silvinaen
dc.contributor.authorNeri, Marcoen
dc.contributor.authorCarniel, Robertoen
dc.contributor.authorMartí, Joanen
dc.contributor.authorGrosse, Pabloen
dc.contributor.authorMontero-López, Carolinaen
dc.contributor.authorGeyer, Adelinaen
dc.contributor.departmentInstituto de Bio y Geociencias del NOA (IBIGEO), UNSa, CONICET, Salta, Argentinaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentLaboratorio di misure e trattamento dei segnali, Dipartimento Politecnico di Ingegneria e Architettura (DPIA) Universit a di Udine, Udine, Italyen
dc.contributor.departmentInstitute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spainen
dc.contributor.departmentCONICET and Fundaci on Miguel Lillo, Tucum an, Argentinaen
dc.contributor.departmentInstituto de Bio y Geociencias del NOA (IBIGEO), UNSa, CONICET, Salta, Argentinaen
dc.contributor.departmentInstitute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Bio y Geociencias del NOA (IBIGEO), UNSa, CONICET, Salta, Argentina-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità di Udine - Italy-
crisitem.author.deptInstitute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spain-
crisitem.author.deptInstituto de Bio y Geociencias del NOA (IBIGEO), UNSa, CONICET, Salta, Argentina-
crisitem.author.deptInstitute of Earth Sciences Jaume Almera, ICTJA-CSIC, Barcelona, Spain-
crisitem.author.orcid0000-0003-3632-2960-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.orcid0000-0001-8391-2512-
crisitem.author.orcid0000-0002-6721-6653-
crisitem.author.orcid0000-0002-8803-6504-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2017 Guzm-n_et_al-2017-Terra_Nova.pdf6.1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s)

633
checked on Mar 27, 2024

Download(s)

3
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric