Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/11041
DC Field | Value | Language |
---|---|---|
dc.date.accessioned | 2018-03-07T08:10:34Z | en |
dc.date.available | 2018-03-07T08:10:34Z | en |
dc.date.issued | 2017-03-06 | en |
dc.identifier.uri | http://hdl.handle.net/2122/11041 | en |
dc.description.abstract | The Campi Flegrei caldera is one of the highest risk volcanic fields worldwide, because of its eruptive history and the large population hosted within the caldera. It experiences bradiseismic crises: sudden uplift with low energetic seismic swarm occurrences. No seismicity is recorded out of these deformation rate changes. Therefore, a continuous seismic monitoring of the caldera is possible only by means of the ambient seismic noise. We apply a noise-based seismic monitoring technique to the cross correlations of 5 year recordings at the mobile seismic network. The resulting relative velocity variations are compared to the temporal behavior of the geophysical and geochemical observations routinely sampled at Campi Flegrei. We discriminate between two kinds of crustal stress field variations acting at different timescales. They are related to a possible magmatic intrusion and to the gradual heating of the hydrothermal system, respectively. This study sets up the basis for future volcano monitoring strategies. | en |
dc.language.iso | English | en |
dc.relation.ispartof | Geophysical Research Letters | en |
dc.relation.ispartofseries | /44 (2017) | en |
dc.subject | noise-based monitoring | en |
dc.subject | Campi Flegrei caldera | en |
dc.title | Noise-based seismic monitoring of the Campi Flegrei caldera | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.description.pagenumber | 2237–2244 | en |
dc.subject.INGV | 04.06. Seismology | en |
dc.subject.INGV | 04.08. Volcanology | en |
dc.identifier.doi | 10.1002/2016GL072477 | en |
dc.relation.references | Amoruso, A., L. Crescentini, I. Sabbetta, P. De Martino, U. Obrizzo, and U. Tammaro (2014), Clues to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data, Geophys. Res. Lett., 41, 3081–3088, doi:10.1002/2014GL059539. Aster, R., R. P. Meyer, G. De Natale, A. Zollo, M. Martini, E. Del Pezzo, R. Scarpa, and G. Iannaccone (1992), Seismic investigation of Campi Flegrei caldera, in Volcanic Seismology, Proc. Volcanol. Series III, Springer, New York. Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm, J. Seismol., 13, 253–266, doi:10.1007/s10950-008-9125-z. Brenguier, F., N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant, and A. Nercessian (2008), Towards forecasting volcanic eruptions using seismic noise, Nat. Geosci., 1, 126–130. Brenguier, F., M. Campillo, T. Takeda, Y. Aoki, N. M. Shapiro, X. Briand, K. Emoto, and H. Miyake (2014), Mapping pressurized volcanic fluids from induced crustal seismic velocity drops, Science, 345, 80–82. Campillo, M. (2006), Phase and correlation in random seismic fields and the reconstruction of the Green function, Pure Appl. Geophys., 163, 475–502. Chiodini, G., S. Caliro, P. De Martino, R. Avino, and F. Gherardi (2012), Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations, Geology, 40, 943–946, doi:10.1130/G33251.1. Chiodini, G., J. Vandemeulebrouck, S. Caliro, L. D’Auria, P. De Martino, A. Mangiacapra, and Z. Petrillo (2015), Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera, Earth Planet. Sci. Lett., 414, 58–67. Chiodini, G., A. Paonita, A. Aiuppa, A. Costa, S. Caliro, P. De Martino, V. Acocella, and J. Vandemeulebrouck (2016), Magmas near the critical degassing pressure drive volcanic unrest towards a critical state, Nat. Commun., 7, 13712, doi:10.1038/ncomms13712. D’Auria, L., et al. (2015), Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera, Sci. Rep., 5, 13100, doi:10.1038/srep13100. Derode, A., E. Larose, M. Tanter, J. de Rosny, A. Tourin, M. Campillo, and M. Fink (2003), Recovering the Greens function from field—Field correlations in an open scattering medium (L), J. Acoust. Soc. Am., 113, 2973–2976. De Martino, P., U. Tammaro, and F. Obrizzo (2014), GPS time series at Campi Flegrei caldera (2000–2013), Ann. Geophys., 57(2), S0213, doi:10.4401/ag-6431. De Siena, L., E. Del Pezzo, and F. Bianco (2011), A scattering image of Campi Flegrei from the autocorrelation functions of velocity tomograms, Geophys. J. Int., 184, 1304–1310, doi:10.1111/j.1365-246X.2010.04911.x.Di Luccio, F., N. A. Pino, A. Piscini, and G. Ventura (2015), Significance of the 1982–2014 Campi Flegrei seismicity: Preexisting structures, hydrothermal processes, and hazard assessment, Geophys. Res. Lett., 42, 7498–7506, doi:10.1002/2015GL064962. Froment, B., M. Campillo, P. Roux, P. Gouédard, A. Verdel, and R. L. Weaver (2010), Estimation of the effects of nonisotropically distributed energy on the apparent arrival time in correlations, Geophysics, 75(5), SA85–SA93. Hadziioannou, C., E. Larose, O. Coutant, P. Roux, and M. Campillo (2009), Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments, J. Acoust. Soc. Am., 125(6), 3688–3695. Hillers, G., M. Campillo, and K.-F. Ma (2014), Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties, Earth Planet. Sci. Lett., 391, 121–127. Istituto Nazionale di Geofiscia e Vulcanologia (INGV), Osservatorio Vesuviano, and sezione di Napoli (2015). [Available at http://www.ov.ingv.it/ov/bollettini-campi-flegrei/.] Landès, M., F. Hubans, N. M. Shapiro, A. Paul, and M. Campillo (2010), Origin of deep ocean microseisms by using teleseismic body waves, J. Geophys. Res., 115, B05302, doi:10.1029/2009JB006918. Lesage, P., G. Reyes-Davila, and R. Arambula-Mendoza (2014), Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in volcan de Colima, Mexico, J. Geophys. Res., 119, 4360–4376, doi:10.1002/2013JB010884. Lobkis, O. I., and R. L. Weaver (2001), On the emergence of the Greens function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011 – 3017. Maeda, T., K. Obara, and Y. Yukutake (2010), Seismic velocity decrease and recovery related to earthquake swarms in a geothermal area, Earth Planets Space, 62(9), 685–691. Margerin, L., M. Campillo, B. A. Van Tiggelen, and R. Hennino (2009), Energy partition of seismic coda waves in layered media: Theory and application to Pinyon Flats Observatory, Geophys. J. Int., 177(2), 571–585. Orsi, G., M. A. Di Vito, J. Selva, and W. Marzocchi (2009), Long-term forecast of eruption style and size at Campi Flegrei, Earth Planet. Sci. Lett., 287, 265–276. Paul, A., M. Campillo, L. Margerin, E. Larose, and A. Derode (2005), Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves, J. Geophys. Res., 110, B08302, doi:10.1029/2004JB003521. Piccinini, D., L. Zaccarelli, M. Pastori, L. Margheriti, F. P. Lucente, P. De Gori, L. Faenza, and G. Soldati (2015), Seismic measurements to reveal short-term variations in the elastic properties of the Earth crust, Boll. di Geofis. Teorica e Appl., 56(2), 257–274, doi:10.4430/bgta0140. Poupinet, G., W. L. Ellsworth, and J. Frechet (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault, California, J. Geophys. Res., 89, 5719–5731. Richter, T., C. Sens-Schönfelder, R. Kind, and G. Ash (2014), Comprehensive observation and modeling of earthquake and tenperature-related seismic velocity changes in northern Chile with passive image interferometry, J. Geophys. Res. Solid Earth, 119, 4747–4765, doi:10.1002/2013JB010695. Saccorotti, G., F. Bianco, M. Castellano, and E. Del Pezzo (2001), The July–August 2000 seismic swarms at Campi Flegrei volcanic complex, Italy, Geophys. Res. Lett., 28, 2525–2528. Sens-Schönfelder, C., and U. Wegler (2006), Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 33, L21302, doi:10.1029/2006GL027797. Stehly, L., M. Campillo, and N. M. Shapiro (2006), A study of the seismic noise from its long-range correlation properties, J. Geophys. Res., 111(B10306), doi:10.1029/2005JB004237. Trasatti, E., M. Polcari, M. Bonafede, and S. Stramondo (2015), Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera, Geophys. Res. Lett., 42, 3847–3854, doi:10.1002/2015GL063621. Ueno, T., T. Saito, K. Shiomi, B. Enescu, H. Hirose, and K. Obara (2012), Fractional seismic velocity change related to magma intrusions during earthquake swarms in the eastern Izu peninsula, central Japan, J. Geophys. Res., 117, B12305, doi:10.1029/2012JB009580. VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bull. Seismol. Soc. Am., 80, 150–169. Zaccarelli, L., N. M. Shapiro, L. Faenza, G. Soldati, and A. Michelini (2011), Variations of the elastic properties during the 2009 L’Aquila earthquake inferred from cross-correlations of ambient seismic noise, Geophys. Res. Lett., 38, L24304, doi:10.1029/2011GL049750. Zatsepin, S. V., and S. Crampin (1997), Modeling the compliance of crustal rock—I. Response of shear-wave splitting to differential stress, Geophys. J. Int., 129, 477–494. | en |
dc.description.obiettivoSpecifico | 4V. Dinamica dei processi pre-eruttivi | en |
dc.description.journalType | JCR Journal | en |
dc.contributor.author | Zaccarelli, Lucia | en |
dc.contributor.author | Bianco, Francesca | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | restricted | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.orcid | 0000-0002-4053-7625 | - |
crisitem.author.orcid | 0000-0001-5400-7724 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 04. Solid Earth | - |
crisitem.classification.parent | 04. Solid Earth | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2017GRL_Zaccarelli-Bianco.pdf | article | 1.53 MB | Adobe PDF | View/Open |
2017GRL_Zaccarelli-Bianco_SI.pdf | supplementary information | 884.56 kB | Adobe PDF | View/Open |
WEB OF SCIENCETM
Citations
7
checked on Feb 10, 2021
Page view(s)
541
checked on Sep 7, 2024
Download(s)
104
checked on Sep 7, 2024