Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10972
DC FieldValueLanguage
dc.date.accessioned2018-03-05T12:02:06Zen
dc.date.available2018-03-05T12:02:06Zen
dc.date.issued2016en
dc.identifier.urihttp://hdl.handle.net/2122/10972en
dc.description.abstractEarthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2), slip rates (~1 m/s), and normal stresses (>>10 MPa) expected at the passage of the earthquake rupture along the front of fault patches, measured large fault dynamic weakening for slip rates larger than a critical velocity of 0.01–0.1 m/s. The dynamic weakening corresponds to a decrease of the friction coefficient (defined as the ratio of shear stress vs. normal stress) up to 40%–50% after few millimetres of slip (flash weakening), almost independently of rock type. The microstructural evolution of the sliding interfaces with slip may yield hints on the microphysical processes responsible for flash weakening. At the microscopic scale, the frictional strength results from the interaction of micro- to nano-scale surface irregularities (asperities) which deform during fault sliding. During flash weakening, the visco-plastic and brittle work on the asperities results in abrupt frictional heating (flash heating) and grain size reduction associated with mechano-chemical reactions (e.g., decarbonation in CO2-bearing minerals such as calcite and dolomite; dehydration in water-bearing minerals such as clays, serpentine, etc.) and phase transitions (e.g., flash melting in silicate-bearing rocks). However, flash weakening is also associated with grain size reduction down to the nanoscale. Using focused ion beam scanning and transmission electron microscopy, we studied the micro-physical mechanisms associated with flash heating and nanograin formation in carbonate-bearing fault rocks. Experiments were conducted on pre-cut Carrara marble (99.9% calcite) cylinders using a rotary shear apparatus at conditions relevant to seismic rupture propagation. Flash heating and weakening in calcite-bearing rocks is associated with a shock-like stress release due to the migration of fast-moving dislocations and the conversion of their kinetic energy into heat. From a review of the current natural and experimental observations we speculate that this mechanism tested for calcite-bearing rocks, is a general mechanism operating during flash weakening (e.g., also precursory to flash melting in the case of silicate-bearing rocks) for all fault rock types undergoing fast slip acceleration due to the passage of the seismic rupture front. © 2016 by the authors; licensee MDPI, Basel, Switzerland.en
dc.language.isoEnglishen
dc.relation.ispartofCrystalsen
dc.relation.ispartofseries/6 (2016)en
dc.titleDislocation Motion and the Microphysics of Flash Heating and Weakening of Faults during Earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber83en
dc.identifier.doi10.3390/cryst6070083en
dc.description.obiettivoSpecifico4T. Sismologia, geofisica e geologia per l'ingegneria sismicaen
dc.description.obiettivoSpecifico2IT. Laboratori sperimentali e analiticien
dc.description.journalTypeJCR Journalen
dc.contributor.authorSpagnuolo, Elenaen
dc.contributor.authorPlümper, Oliveren
dc.contributor.authorViolay, Marieen
dc.contributor.authorCavallo, Andreaen
dc.contributor.authorDi Toro, Giulioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht, Netherlandsen
dc.contributor.departmentLEMR, ENAC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht, Netherlands-
crisitem.author.deptEPFL, LEMR, Lausanne, Switzerland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1377-5812-
crisitem.author.orcid0000-0001-9726-0885-
crisitem.author.orcid0000-0002-7402-8263-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Spagnuolo et al (Crystals2016).pdf2.29 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s)

91
checked on Apr 17, 2024

Download(s)

85
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric