Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10911
DC FieldValueLanguage
dc.date.accessioned2018-03-01T14:06:32Zen
dc.date.available2018-03-01T14:06:32Zen
dc.date.issued2016-07-26en
dc.identifier.urihttp://hdl.handle.net/2122/10911en
dc.descriptionGeodesy, Geodynamics and Tectonics of the Italian Peninsulaen
dc.description.abstractWe present a dense crustal velocity field and corresponding strain-rate pattern computed using Global Positioning System (GPS)- Global Navigation Satellite System (GNSS) data from several hundred permanent stations in the Italian Peninsula. GPS data analysis is based on the GAMIT/GLOBK 10.6 software, which was developed and maintained mainly by Massachusetts Institute of Technology (MIT), using tools based on the distributed-sessions approach implemented in this package. The GPS data span the period from January 2008 to December 2012 and come from several different permanent GPS networks in Italy. The GLOBK package implemented in the last version of the GAMIT package is used to compute the position time-series and velocities registered in the International Terrestrial Reference Frame (ITRF) 2008. The resulting high-density intra-plate velocity field provides indications of the tectonics of the Mediterranean region. A computation of the strain-rate pattern from GPS data is performed and compared with the map of the epicentral locations of historical earthquakes that occurred in the last 1000 years in the Italian territory, showing that, in general, higher crustal deformation rates are active in regions affected by seismicity of greater magnitude.en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V. on behalf of KeAi Communications Co., Ltden
dc.relation.ispartofGeodesy and Geodynamicsen
dc.relation.ispartofseries5/7 (2016)en
dc.subjectGPSen
dc.subjectStrain Rateen
dc.subjectDistributed Sessionsen
dc.subjectTectonicsen
dc.titleComparison of the historic seismicity and strain-rate pattern from a dense GPS-GNSS network solution in the Italian Peninsulaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber303-316en
dc.identifier.URLhttps://www.sciencedirect.com/science/article/pii/S1674984716300672?via%3Dihuben
dc.subject.INGV04.03. Geodesyen
dc.subject.INGV04.07. Tectonophysicsen
dc.identifier.doi10.1016/j.geog.2016.06.003en
dc.relation.references[1] Hackl M, Malservisi R, Wdowinski S. Strain rate patterns from dense GPS networks. Nat Hazards Earth Syst Sci 2009;9:1177e87. [2] Wessel P, Bercovici D. Interpolation with splines in tension: a Green's function approach. Math Geol 1998;30:77e93. http:// dx.doi.org/10.1023/A:1021713421882. Available online: http:// link.springer.com/article/10.1023%2FA% 3A1021713421882#page-1 [accessed 20.01.16]. [3] Wessel P, Smith WHF. New, improved version of generic mapping tools released. Eos Trans AGU 1998;79:579e83. [4] Mappa di pericolosit a sismica del territorio nazionale. Available online: http://zonesismiche.mi.ingv.it/documenti/ mappa_opcm3519.pdf [accessed 18.11.15]. [5] Hatanaka YA. Compression format and tools for GNSS observation data. Bull Geogr Surv Inst 2008;55:21e30. [6] Rete Integrata Nazionale GPS (RING). Available online: http:// ring.gm.ingv.it/ [accessed 18.11.15]. [7] Avallone A, Selvaggi G, D'Anastasio E, D'Agostino N, Pietrantonio G, Riguzzi F, et al. The RING network: improvement of a GPS velocity field in the central Mediterranean. Ann Geophys 2010;53:39e54. [8] Italpos. Smartnet Italy. Available online: http://it.smartneteu. com/ [accessed 18.11.15]. [9] ASI, Italian Space Agency. Available online: ftp://geodaf.mt. asi.it [accessed 18.11.15]. [10] Bernese GNSS software. Available online: http://www. bernese.unibe.ch/ [accessed on 18.11.15]. [11] Gipsy-Oasis software. Available online: https://gipsy-oasis. jpl.nasa.gov/ [accessed 18.11.15]. [12] Bruyninx C. The EUREF Permanent Network: a multidisciplinary network serving surveyors as well as scientists. GeoInformatics 2004;7:32e5. [13] Bruyninx C, Habrich H, S~ohne W, Kenyeres A, Stangl G, V~olksen C. Enhancement of the EUREF permanent network services and products. “Geodesy for Planet Earth”, IAG Symposia Series, vol. 136; 2012. p. 27e35. http://dx.doi.org/ 10.1007/978-3-642-20338-1_4. [14] EUREF Permanent Network. Available online: http://www. epncb.oma.be/ [accessed 18.11.15]. [15] Casula G. GPS data processing of five years of more than 300 permanent station database with the distributed sessions approach using Gamit/Globk 10.5 data analysis software in Italian Peninsula. In: Proceedings of the 1st Int Electron Conf Remote Sens 22 Junee5 July 2015; Sciforum Electronic Conference Series, vol. 1; 2015. b001. http://dx.doi.org/ 10.3390/ecrs-1-b001. [16] Herring TA, King RW, McClusky SC. GPS analysis at MIT, GAMIT reference manual, release 10.5. Cambridge MA, USA: Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology; 2010. Available online at: http://wwwgpsg.mit.edu/~simon/gtgk/GAMIT_Ref. pdf [accessed 12.05.15]. [17] SOPAC Scripps orbit and permanent array Center. Available online: http://garner.ucsd.edu [accessed 18.11.15]. [18] Dubbini M, Cianfarra P, Casula G, Capra A, Salvini F. Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting. J Geophys Res 2010;115. http://dx.doi.org/10.1029/ 2009JB007123. Available online: http://onlinelibrary.wiley. com/doi/10.1029/2009JB007123/abstract [accessed 21.01.16]. [19] (IERS Technical Note No. 32). In: McCarthy DD, Petit G, editors. IERS conventions. Frankfurt am Main, Germany: Verlag des Bundesamtsfu¨ r Kartographie und Geod€asie; 2003e04. p. 127. Available online:, http://www.iers.org/iers/ publications/tn/tn32/ [accessed 21.01.16]. [20] Pavlis NK, Holmes SA, Kenyon SC, Factor JK. The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 2012;117. http://dx.doi.org/ 10.1029/2011JB008916. [21] Colombo OL. Ephemeris errors of GPS satellites. Bull Geod 1986;60:64e84. [22] Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M. Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): theory and initial results. Manuscr Geod 1994;19:367e86. [23] Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In: Henriksen SW, Mancini A, Chovitz BH, editors. The use of artificial satellites for geodesy, 15. Washington D.C., U.S.: Publisher: AGU; 1972. p. 247e51. Available online: http://onlinelibrary.wiley.com/ doi/10.1029/GM015p0247/summary [accessed 21.01.16]. [24] Boehm J, Niell A, Tregoning P, Schuh H. Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 2006;33:L07304. http://dx.doi.org/10.1029/2005GL025546. [25] Boehm J, Werl B, Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 2006;111:B02406. http:// dx.doi.org/10.1029/2005JB003629. [26] Kouba J. Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod 2009;83:199e208. http://dx.doi.org/10.1007/s00190-008-0229-6. [27] Petit G, Luzum B. IERS conventions (IERS Technical Note ; 36). Frankfurt am Main: Verlag des Bundesamtsfu¨ r Kartographie und Geod€asie; 2010. p. 179. ISBN 3-89888-989-6. [28] McCarthy DD, Petit G. IERS conventions (IERS Technical Note No. 32). Frankfurt am Main: Verlag des Bundesamtsfu¨ r Kartographie und Geod€asie; 2003. p. 127. ISBN: 3-89888-884-3. [29] Lyard F, Lefevre F, Letellier T, Francis O. Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 2006;56:394e415. http://dx.doi.org/10.1007/s10236-006-0086-x. [30] Garner ftp site. Available online: ftp://garner.ucsd.edu [accessed 18.11.15]. [31] Herring TA, King RW, Floyd MA, McClusky SC. GAMIT (GPS at MIT) reference manual version 10.6. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology; 16 June 2015. p. 1e165. Available online at: http://wwwgpsg.mit.edu/~simon/gtgk/GAMIT_Ref. pdf [accessed 09.12.15]. [32] Herring TA, King RW, Floyd MA, McClusky SC. Global Kalman filter VLBI and GPS analysis program reference manual version 10.6. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology; 16 June 2015. p. 1e85. Available online at: http://www-gpsg. mit.edu/~simon/gtgk/GLOBK_Ref.pdf [accessed 09.12.15]. [33] Dong DN, Herring TA, King RW. Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geod 1998;72:200e14. [34] Serpelloni E, Casula G, Galvani A, Anzidei M, Baldi P. Data analysis of permanent GPS networks in Italy and the surrounding regions: application of a distributed processing approach. Ann Geophys 2006;49:1073e104. [35] Castagnetti C, Casula G, Dubbini M, Capra C. Adjustment and transformation strategies of ItalPoS permanent GNSS network. Ann Geophys 2009;52:181e95. [36] Altamimi Z, M etivier L, Collilieux X. ITRF2008 plate motion model. J Geophys Res 2012;117:B07402. http://dx.doi.org/ 10.1029/2011JB008930. [37] Herring TA. MATLAB Tools for viewing GPS velocities and time series. GPS Solut 2003;7:194e9. [38] Williams SDP. CATS: GPS coordinates time series analysis software. GPS Solut 2008;12:147e53. [39] Riguzzi F, Crespi M, Devoti R, Doglioni C, Pietrantonio G, Pisani AR. Geodetic strain rate and earthquake size: new clues for seismic hazard studies. Phys Earth Planet Inter 2012;206e207:67e75. [40] Koulali A, Susilo S, McClusky S, Meilano I, Cummins P, Tregoning P, et al. Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc. Geophys Res Lett 2016;43:1943e9. http://dx.doi.org/ 10.1002/2016GL067941. [41] Reilinger Robert, McClusky Simon, Vernant Philippe, Lawrence Shawn, Ergintav Semih, Cakmak Rahsan, et al. GPS constraints on continental deformation in the Africa-Arabia- Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 2006;111:B05411. http://dx.doi.org/10.1029/2005JB004051. [42] Riguzzi F, Crespi M, Devoti R, Doglioni C, Pietrantonio G, Pisani AR. Strain rate relaxation of normal and thrust faults. Geophys J Int 2013;195:815e20. http://dx.doi.org/10.1093/gji/ ggt304. [43] Serpelloni E, Anzidei M, Baldi P, Casula G, Galvani A. Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and nonpermanent GPS networks. Geophys J Int 2005;161:861e80. http://dx.doi.org/10.1111/j.1365-246X.2005.02618.x. [44] Casula G. Geodynamics of the Calabrian arc area (Italy) inferred from a dense GNSS network observations. Geod Geodyn 2016;7(Num. 1):76e86. http://dx.doi.org/10.1016/ j.geog.2016.01.001. [45] Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F. Evidence of large-scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet Sci Lett 2011;311:230e41. http://dx.doi.org/10.1016/j.epsl.2011.09.034. [46] Devoti R, Pietrantonio G, Riguzzi F. GNSS networks for geodynamics in Italy. Fis la Tierra 2014;26:11e24. http:// dx.doi.org/10.5209/rev_FITE.2014.v26.46968. [47] De Martino P, Tammaro U, Obrizzo F. GPS time seriesat Campi Flegrei caldera (2000e2013). Ann Geophys 2014;57:S0213. http://dx.doi.org/10.4401/ag-6431. [48] Baldi P, Casula G, Cenni N, Loddo F, Pesci A. GPS-based monitoring of land subsidence in the Po Plain (northern Italy). Earth Planet Sci Lett 2009;288:204e12. http:// dx.doi.org/10.1016/j.epsl.2009.09.023. [49] Baldi P, Devoti R, Riguzzi F, Pietrantonio G. Satellite positioning and geophysics studies in Italy. Rend Fis Acc Lincei 2015. http://dx.doi.org/10.1007/s12210-015-0385-6. [50] Canova F, Tolomei C, Salvi S, Toscani G, Seno S. Land subsidence along the ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry. Earth Surf Process Landforms 2011. http://dx.doi.org/10.1002/esp.2238. [51] Chiarabba C, De Gori P, Improta L, Pio Lucente F, Moretti M, Govoni A, et al. Frontal compression along the Apennines thrust system: the Emilia 2012 example from seismicity to crustal structure. J Geodyn 2014;82:98e109. http://dx.doi.org/ 10.1016/j.jog.2014.09.003. [52] Govoni A, Marchetti A, De Gori P, Di Bona M, Pio Lucente F, Improta L, et al. The 2012 Emilia seismic sequence (Northern Italy): imaging the thrust fault system by accurate aftershock location. Tectonophysics 2014;622:44e55. http://dx.doi.org/ 10.1016/j.tecto.2014.02.013.en
dc.description.obiettivoSpecifico7T. Struttura della Terra e geodinamicaen
dc.description.journalTypeN/A or not JCRen
dc.relation.eissn1674-984en
dc.contributor.authorCasula, Giuseppeen
dc.contributor.authorBianchi, Maria Giovannaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-7934-2019-
crisitem.author.orcid0000-0002-7269-123X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Casula&Bianchi_GEOG_2016.pdfpdf file of the paper18.67 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

3
checked on Feb 10, 2021

Page view(s)

857
checked on Apr 24, 2024

Download(s)

159
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric