Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10620
DC FieldValueLanguage
dc.date.accessioned2017-10-24T16:49:40Zen
dc.date.available2017-10-24T16:49:40Zen
dc.date.issued2017en
dc.identifier.urihttp://hdl.handle.net/2122/10620en
dc.description.abstractIn this work we use fractal statistics in order to decipher the mechanisms acting during explosive volcanic erup- tions by studying the grain size distribution (GSD) of natural pyroclastic-fall deposits. The method was applied to lithic-rich proximal deposits from a stratigraphic section of the Cretaio Tephra eruption (Ischia Island, Italy). Analyses were performed separately on bulk material, juvenile, and lithic fraction from each pyroclastic layer. Re- sults highlight that the bulk material is characterized by a single scaling regime whereas two scaling regimes, with contrasting power-law exponents, are observed for the juvenile and the lithic fractions. On the basis of these results, we infer that the bulk material cannot be considered as a good proxy for deducing eruption dynam- ics because it is the result of mixing of fragments belonging to the lithic and juvenile fraction, both of which underwent different events of fragmentation governed by different mechanisms. In addition, results from fractal analyses of the lithic fraction suggest that it likely experienced a fragmentation event in which the efficiency of fragmentation was larger for the coarser fragments relative to the finer ones. On the contrary, we interpret the different scaling regimes observed for the juvenile fraction to be due to sequential events of fragmentation in the conduit, possibly enhanced by the presence of lithic fragments in the eruptive mixture. In particular, collision- al events generated increasing amounts of finer particles modifying the original juvenile GSDs and determining the development of two scaling regimes in which the finer fragments record a higher efficiency of fragmentation relative to the coarser ones. We further suggest that in lithic-rich proximal fall deposits possible indications about the original GSDs of the juvenile fraction might still reside in the coarser particles fraction.en
dc.language.isoEnglishen
dc.publisher.nameelsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/345 (2017)en
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/en
dc.subjectGrain-size distributionen
dc.subjectFall depositsen
dc.subjectComponentryen
dc.subjectFragmentationen
dc.subjectFractal analysisen
dc.titleSyneruptive sequential fragmentation of pyroclasts from fractal modeling of grain size distributions of fall deposits: the Cretaio Tephra eruption (Ischia Island, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber161–171en
dc.subject.INGV04.08. Volcanologyen
dc.identifier.doi10.1016/j.jvolgeores.2017.07.020en
dc.relation.referencesAndronico, D., Scollo, S., Cristaldi, A., Ferrari, F., 2008. Monitoring ash emission episodes at Mt. Etna: the 16 November 2006 case study. J. Volcanol. Geotherm. Res. 180: 123–134. http://dx.doi.org/10.1016/j.jvolgeores.2008.10.019. Andronico, D., Lo Castro, M.D., Sciotto, M., Spina, L., 2013. The 2010 ash emissions at the summit craters of Mt Etna: relationship with seismo-acoustic signals. J. Geophys. Res. Solid Earth 118:51–70. http://dx.doi.org/10.1029/2012JB009895. Bagheri, G., 2015. Numerical and experimental investigation of particle terminal velocity and aggregation in volcanic plumes. (Ph.D. Thesis, no. Sc. 4844). Univ. Genève http:// archive-ouverte.unige.ch/unige:77593. Barnett, W., 2004. Subsidence breccias in kimberlite pipes: an application of fractal anal- ysis. Lithos 76:299–316. http://dx.doi.org/10.1016/j.lithos.2004.03.019. Bernard, J., Le Pennec, J.-L., 2016. The milling factory: componentry-dependent fragmen- tation and fines production in pyroclastic flows. Geology 44, 907–910. Campbell, M.E., Russell, J.K., Porritt, L.A., 2013. Thermomechanical milling of accessory lithics in volcanic conduits. Earth Planet. Sci. Lett. 377–378, 276–286. Carey, R.J., Houghton, B.F., 2010. “Inheritance”: an influence on the particle size of pyro- clastic deposits. Geology 38:347–350. http://dx.doi.org/10.1130/G30573.1. Carey, R.J., Houghton, B.F., Sable, J.E., Wilson, C.J.N., 2007. Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull. Volcanol. 69, 903–926. Carpinteri, A., Pugno, N., 2002. Fractal comminution approach to evaluate the drilling en- ergy dissipation. Int. J. Numer. Anal. Methods Geomech. 26:499–513. http:// dx.doi.org/10.1002/nag.209. Cashman, K.V., Scheu, B., 2015. Magmatic fragmentation. In: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Elsevier/Academic Press, San Diego, pp. 459–471. Costa, A., Pioli, L., Bonadonna, C., 2016. Assessing tephra total grain-size distribution: in- sights from field data analysis. Earth Planet. Sci. Lett. 443, 90–107. de Vita, S., Sansivero, F., Orsi, G., Marotta, E., Piochi, M., 2010. Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. In: Groppelli, G., Viereck-Goette, L. (Eds.), Stratigr. Geol. Volcan. Areas: Geol. Soc. Am. Special Paper 464:pp. 193–241 http://dx.doi.org/10.1130/2010.2464(10). del Gaudio, P., Ventura, G., 2008. Mechanical erosion of xenoliths by magmatic shear flow. Geophys. Res. Lett. 35, 1–5. Dufek, J., Manga, M., Patel, A., 2012. Granular disruption during explosive volcanic erup- tions. Nat. Geosci. 5:561–564. http://dx.doi.org/10.1038/ngeo1524. Eychenne, J., Le Pennec, J.L., Troncoso, L., Gouhier, M., Nedelec, J.M., 2012. Causes and con- sequences of bimodal grain-size distribution of tephra fall deposited during the Au- gust 2006 Tungurahua eruption (Ecuador). Bull. Volcanol. 74:187–205. http:// dx.doi.org/10.1007/s00445-011-0517-5. Eychenne, J., Le Pennec, J.-L., Ramón, P., Yepes, H., 2013. Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). Earth Planet. Sci. Lett. 362, 343–355. Fisher, R.V., 1964. Maximun size, median diameter, and sorting of tephra. J. Geophys. Res. 69:341–355. http://dx.doi.org/10.1029/JZ069i002p00341. Girault, F., Carazzo, G., Tait, S., Ferrucci, F., Kaminski, É., 2014. The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes. Earth Planet. Sci. Lett. 394: 124–134. http://dx.doi.org/10.1016/j.epsl.2014.03.021. Goossens, D., 2007. Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology 55:65–96. http://dx.doi.org/10.1111/j.1365-3091.2007.00893.x. Gouhier, M., Donnadieu, F., 2008. Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J. Geophys. Res. 113, B10202. http:// dx.doi.org/10.1029/2007JB005383. Grady, D.E., 2008. Fragment size distributions from the dynamic fragmentation of brittle solids. Int. J. Impact Eng. 35, 1557–1562. Grady, D.E., 2010. Length scales and size distributions in dynamic fragmentation. Int. J. Fract. 163, 85–99. Gualda, G.A., Cook, D.L., Chopra, R., Qin, L., Anderson, A.T., Rivers, M., 2004. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma. Trans. R. Soc. Edinb. Earth Sci. 95:375–390. http://dx.doi.org/10.1017/ S0263593300001139. Hanson, J., Rust, A., Phillips, J.C., Sulpizio, R., Engwell, S., Costa, A., 2016. Conduit evolution during the Avellinio Plinian eruption (Vesuvius): insights from fieldwork, lithic grain size distributions and modeling. EGU. Geophys. Res. Abstr. 18, 2016–17736. Hatton, C.G., Main, I.G., Meredith, P.G., 1994. Non-universal scaling of fracture length and opening displacement. Nature 367, 160–162. Houghton, B.F., Nairn, I.A., 1991. The 1976–1982 Strombolian and phreatomagmatic erup- tions of White Island, New Zealand: eruptive and depositional mechanisms at a ‘wet’ volcano. Bull. Volcanol. 54:25–49. http://dx.doi.org/10.1007/BF00278204. Inman, D.L., 1952. Measures of describing the size distribution of sediments. J. Sediment. Petrol. 22, 125–145. Jones, T.J., Russell, J.K., 2017. Ash production by attrition in volcanic conduits and plumes. Sci Rep 7:5538. http://dx.doi.org/10.1038/s41598-017-05450-6. Jones, T.J., McNamara, K., Eychenne, J., Rust, A.C., Cashman, K.V., Scheu, B., Edwards, R., 2016. Primary and secondary fragmentation of crystal-bearing intermediate magma. J. Volcanol. Geotherm. Res. 327, 70–83. Kaminski, É., Jaupart, C., 1998. The size distribution of pyroclasts and the fragmentation sequence inexplosive volcanic eruptions. J. Geophys. Res. 103:29759–29779. http:// dx.doi.org/10.1029/98JB02795. Koyaguchi, T., Ohno, M., 2001. Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits: 1. Methods. J. Geophys. Res. 106:6499–6512. http://dx.doi.org/10.1029/2000JB900426. Kueppers, U., Scheu, B., Spieler, O., Dingwell, D.B., 2006. Fragmentation efficiency of explo- sive volcanic eruptions: a study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res. 153:125–135. http://dx.doi.org/10.1016/j.jvolgeores.2005.08.006. Liu, E.J., Cashman, K.V., Rust, A.C., Gislason, S.R., 2015. The role of bubbles in generating fine ash during hydromagmatic eruptions. Geology 43:239–242. http://dx.doi.org/ 10.1130/G36336.1. Macedonio, G., Dobran, F., Neri, A., 1994. Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth Planet. Sci. Lett. 121, 137–152. Main, I.G., Leonard, T., Papasouliotis, O., Hatton, C.G., Meredith, P.G., 1999. One slope or two? Detecting statistically significant breaks of slope in geophysical data, with appli- cation to fracture scaling relationships. Geophys. Res. Lett. 26, 2801–2804. Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. W.H. Freeman & Co, San Francisco. Matsushita, M., 1985. Fractal viewpoint of fracture and accretion. J. Phys. Soc. Jpn. 54: 857–860. http://dx.doi.org/10.1143/JPSJ.54.857. Mueller, S.B., Lane, S.J., Kueppers, U., 2015. Lab-scale ash production by abrasion and col- lision experiments of porous volcanic samples. J. Volcanol. Geotherm. Res. 302, 163–172. Murrow, P.J., Rose Jr., W.I., Self, S., 1980. Determination of the total grain size distribution in a vulcanian eruption column, and its implications to stratospheric aerosol pertur- bation. Geophys. Res. Lett. 7:893–896. http://dx.doi.org/10.1029/GL007i011p00893. Nakamura, A.M., Michel, P., Setoh, M., 2007. Weibull parameters of Yakuno basalt targets used in documented high velocity impact experiments. J. Geophys. Res. 112, E02001. http://dx.doi.org/10.1029/2006JE002757. Orsi, G., Gallo, G., Heiken, G., Wohletz, K., Yu, E., Bonani, G., 1992. A comprehensive study of pumice formation and dispersal: the Cretaio Tephra of Ischia (Italy). J. Volcanol. Geotherm. Res. 53:329–354. http://dx.doi.org/10.1016/0377-0273(92)90090-Z. Pepe, S., Solaro, G., Ricciardi, G.P., Tizzani, P., 2008. On the fractal dimension of the fallout deposits: a case of study of the 79 A.D. Plinian eruption at Mt. Vesuvius. J. Volcanol. Geotherm. Res. 177:288–299. http://dx.doi.org/10.1016/j.jvolgeores.2008.01.023. Perfect, E., 1997. Fractal models for the fragmentation of soils and rocks: a review. Eng. Geol. 48:185–198. http://dx.doi.org/10.1016/S0013-7952(97)00040-9. Perugini, D., Kueppers, U., 2012. Fractal analysis of experimentally generated pyroclastics: a tool for volcanic hazard assessment. Acta Geophys. 60:682–698. http://dx.doi.org/ 10.2478/s11600-012-0019-7. Perugini, D., Speziali, A., Caricchi, L., Kueppers, U., 2011. Application of fractal fragmenta- tion theory to natural pyroclastic deposits: insights into volcanic explosivity of the Valentano scoria cone (Italy). J. Volcanol. Geotherm. Res. 202:200–210. http:// dx.doi.org/10.1016/j.jvolgeores.2011.02.008. Sheridan, M.F., 1971. Particle-size characteristics of pyroclastic tuffs. J. Geophys. Res. 76, 5627–5634. Sheridan, M.F., Wohletz, K.H., Dehn, J., 1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Geology 15, 367–370. Spieler, O., Alidibirov, M., Dingwell, D.B., 2003. Grain-size characteristics of experimental pyroclast of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature. Bull. Volcanol. 65:90–104. http://dx.doi.org/10.1007/s00445-002- Turcotte, D.L., 1986. Fractals and fragmentation. J. Geophys. Res. 91:1921–1926. http:// dx.doi.org/10.1029/JB091iB02p01921. Turcotte, D.L., 1989. Fractals in geology and geophysics. Pure Appl. Geophys. 131, 171–196. Turcotte, D.L., 1992. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, U.K. (216 pp.). Tyler, S.W., Wheatcraft, S.W., 1992. Fractal scaling of soil particle-size distributions: anal- ysis and limitations. Soil Sci. Soc. Am. J. 56:362–369. http://dx.doi.org/10.2136/ sssaj1992.03615995005600020005x. Walker, G.P.L., 1973. Explosive volcanic eruptions: a new classification scheme. Geol. Rundsch. 62, 431–446. Zimanowski, B., Wohletz, K., Dellino, P., Büttner, R., 2003. The volcanic ash problem. J. Volcanol. Geotherm. Res. 122:1–5. http://dx.doi.org/10.1016/S0377- 0273(02)00471-7.en
dc.description.obiettivoSpecifico3V. Proprietà dei magmi e dei prodotti vulcanicien
dc.description.journalTypeJCR Journalen
dc.relation.issn0377-0273en
dc.contributor.authorParedes-Mariño, J.en
dc.contributor.authorMorgavi, D.en
dc.contributor.authorDi Vito, Mauroen
dc.contributor.authorDe Vita, S.en
dc.contributor.authorSansivero, Fabioen
dc.contributor.authorDueffels, K.en
dc.contributor.authorBeckmann, G.en
dc.contributor.authorPerugini, D.en
dc.contributor.departmentDepartment of Physics and Geology, University of Perugia, Piazza Università, Perugia 06123, Italyen
dc.contributor.departmentDepartment of Physics and Geology, University of Perugia, Piazza Università, Perugia 06123, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italiaen
dc.contributor.departmentRetsch Technology GmbH, Retsch Allee 1–5, 42781 Haan, Germanyen
dc.contributor.departmentRetsch Technology GmbH, Retsch Allee 1–5, 42781 Haan, Germanyen
dc.contributor.departmentDepartment of Physics and Geology, University of Perugia, Piazza Università, Perugia 06123, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Physics and Geology, University of Perugia, Piazza Università, Perugia 06123, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptRetsch Technology GmbH, Retsch Allee 1–5, 42781 Haan, Germany-
crisitem.author.deptRetsch Technology GmbH, Retsch Allee 1–5, 42781 Haan, Germany-
crisitem.author.orcid0000-0002-2858-1586-
crisitem.author.orcid0000-0002-7913-9149-
crisitem.author.orcid0000-0002-5337-7560-
crisitem.author.orcid0000-0002-9146-4243-
crisitem.author.orcid0000-0002-2888-6128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Paredes et al_2017.pdf1.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2021

Page view(s)

413
checked on Mar 27, 2024

Download(s)

9
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric