Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10518
DC FieldValueLanguage
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallFerrera, E.; Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.authorallGiammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCurrenti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCirrincione, R.; Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.authorallPatanè, G.; Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.authorallZanon, V.; Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugalen
dc.date.accessioned2017-03-24T07:22:44Zen
dc.date.available2017-03-24T07:22:44Zen
dc.date.issued2016-04-15en
dc.identifier.urihttp://hdl.handle.net/2122/10518en
dc.description.abstractIn Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.en
dc.language.isoEnglishen
dc.publisher.nameNatureen
dc.relation.ispartofScientific Reportsen
dc.relation.ispartofseries/6 (2016)en
dc.subjectMt. Etnaen
dc.subjectsoil radonen
dc.titleSoil radon measurements as a potential tracer of tectonic and volcanic activityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber24581en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1038/srep24581en
dc.relation.references1. Stranden, E., Kolstad, A. K. & Lind, B. The influence of moisture and temperature on radon exhalation. Radiation Protection Dosimetry 7(1–4), 55–58 (1984). 2. King, C.-H., King, B.-S. & Evans, W. C. Spatial Radon anomalies on active faults in California. Appl. Geochem. 11, 497–510 (1996). 3. Mazur, D., Janik, M., Loskiewicz, J., Olko, P. & Swakon, J. Measurements of Radon concentration in soil gas by CR-39 detectors. Radiat. Meas. 31, 295–300 (1999). 4. Jonsson, G. et al. Soil Radon levels measured with SSNTD’s and the soil radium content. Radiat. Meas. 31, 291–294 (1999). 5. Choubey, V. M., Bist, K. S., Saini, N. K. & Ramola, R. C. Relation between soil-gas Radon variation and different lithotectonic units, Garhwal Himalya, India. Appl. Radiat. and Isot. 51, 487–592 (1999). 6. Durrani, S. A. Radon concentration values in the field: Correlation with underlying geology. Radiat. Meas. 31(1–6), 271–276 (1999). 7. Vaupotič, J. Indoor Radon in Slovenia. Nucl. Tecn. and Rad. Prot. 2, 36–43 (2003). 8. Cigolini, C., Laiolo, M., Ulivieri, G., Coppola, D. & Ripepe, M. Radon mapping, automatic measurements and extremely high 222Rn emissions during the 2002–2007 eruptive scenarios at Stromboli volcano. J. Volcanol. Geotherm. Res. 256, 49–65, doi: 10.1016/j. jvolgeores.2013.07.011 (2013). 9. Alparone, S., Behncke, B., Giammanco, S., Neri, M. & Privitera, E. Paroxysmal summit activity at Mt. Etna monitored through continuous soil radon measurements. Geophys. Res. Lett. 32, L16307, doi: 10.1029/2005GL023352 (2005). 10. Morelli, D. et al. Evidence of soil radon as tracer of magma uprising in Mt. Etna. Radiat. Meas. 41, 721–725 (2006). 11. Giammanco, S., Sims, K. W. W. & Neri, M. Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochem. Geophys. Geosyst. 8, Q10001, doi: 10.1029/2007GC001644 (2007). 12. Falsaperla, S. et al. “Failed” eruptions revealed by the study of gas emission and volcanic tremor data at Mt. Etna, Italy. Int. J. Earth Sci. (Geol Rundsch) 103, 297–313, doi: 10.1007/s00531-013-0964-7 (2014). 13. Neri, M. et al. Continuous soil radon monitoring during the july 2006 Etna eruption. Geophys. Res. Lett. 33, L24316, doi: 10.1029/2006GL028394 (2006). 14. Immè, G., La Delfa, S., Lo Nigro, S., Morelli, D. & Patane, G. Gas Radon emission related to geodynamic activity of Mt. Etna. Ann. Geophys. 48, 65–71 (2005). 15. Immè, G., La Delfa, S., Lo Nigro, S., Morelli, D. & Patane, G. Soil Radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption. Radiat. Meas. 41, 241–245 (2006).16. Neri, M., Guglielmino, F. & Rust, D. Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the southern boundary of the unstable sector. J. Geophys. Res. 112, B04410, doi: 10.1029/2006JB004756 (2007). 17. La Delfa, S. et al. Radon measurements in the SE and NE flank of Mt. Etna (Italy). Radiat. Meas. 42, 1404–1408 (2007). 18. Giammanco, S., Immè, G., Mangano, G., Morelli, D. & Neri, M. Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy). Appl. Radiat. Isotopes 67, 178–185, doi: 10.1016/j. apradiso.2008.09.007 (2009). 19. Siniscalchi, A. et al. Insights into fluid circulation across the Pernicana fault (Mt. Etna, Italy) and implications for flank instability. J. Volcanol. Geotherm. Res. 193, 137–142, doi: 10.1016/j.jvolgeores.2010.03.013 (2010). 20. Burton, M., Neri, M. & Condarelli, D. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys. Res. Lett. 31(7), L07618 (2004). 21. Bonforte, A. et al. Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy), J. Volcanol. Geotherm. Res. 251, 27–40, doi: 10.1016/j.jvolgeores.2012.08.010 (2013). 22. Neri, M., Acocella, V. & Behncke, B. The role of the Pernicana fault system in the spreading of Mt. Etna (italy) during the 2002–2003 eruption. Bull. Volcanol. 66, 417–430, doi: 10.1007/s00445-003-0322-x (2004). 23. Alparone, S. et al. Seismological features of the Pernicana–Provenzana Fault System (Mt. Etna, Italy) and implications for the dynamics of northeastern flank of the volcano. J. Volcanol Geoth. Res. 151, 16–26, doi: 10.1016/j.jvolgeores.2012.03.010 (2012). 24. Ruch, J. et al. Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability? J. Geophys. Res. Solid Earth. 118, 4398–4409, doi: 10.1002/jgrb.50281 (2013). 25. Neri, M. et al. Structural analysis of the eruptive fissures at Mount Etna (Italy). Ann. Geophys. 54, 5, 464–479, doi: 10.4401/ag-5332 (2011). 26. Lanzafame, G., Leonardi, A., Neri, M. & Rust, D. Late overthrust of the Appenine - Maghrebian Chain at the NE periphery of Mt. Etna, Sicily. C. R. Acad. Sci. Paris, t. 324, serie II a, 325–332 (1997). 27. Branca, S., Coltelli, M. & Groppelli, G. Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy, Ital. J. Geosci. 130(3), 306–317, doi: 10.3301/IJG.2011.13 (2011). 28. Acocella, V. & Neri, M. Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy). J. Structural Geology 27(2), 343–355, doi: 10.1016/j.jsg.2004.07.006 (2005). 29. Currenti, G. et al. Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest, Remote Sens. Environ. 125, 64–72, doi: 10.1016/j.rse.2012.07.008 (2012). 30. Alparone, S., Bonaccorso, A., Bonforte, A. & Currenti, G. Long-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012. J. Geophys. Res. Solid Earth 118, doi: 10.1002/jgrb.50364 (2013). 31. Vicari, A. et al. Near‐real‐time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption. Geophys. Res. Lett. 38, L13317, doi: 10.1029/2011GL047545 (2011). 32. Del Negro, C. et al. Lava flow hazards at Etna volcano: constraints imposed by eruptive history and numerical simulations, Sci. Rep. 3, 3493, doi: 10.1038/srep03493 (2013). 33. Behncke, B. et al. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 270, 10–21 (2014). 34. Falsaperla, S. & Neri, M. Seismic footprints of shallow dyke propagation at Etna, Italy. Sci. Rep. 5, 11908, doi: 10.1038/srep11908 (2015). 35. Hinkle, M. E. Factors affecting concentrations of helium and carbon dioxide in soil gases. In: E. M. Durance (Ed), Geochemistry of gaseous elements and compounds. Theophrastus Publications SA, Athens, pp. 421–447 (1990). 36. Klusman, R. W. & Jaacks, J. A. Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver, Colorado. J. Geochem. Explor. 27, 259–280 (1987). 37. Pinault, J. L. & Baubron, J. C. Signal processing of soil gas radon, atmospheric pressure, moisture and soil temperature data: a new approach for radon concentration modelling. J. Geophys. Res. 101(B2), 3157–3171 (1996). 38. Toutain, J. P. & Baubron, J. C. Gas geochemistry and seismotectonics: a review. Tectonophys. 304, 1–27 (1999). 39. Wilcoxon, F. Individual comparison by ranking methods. Biometrics Bull 1, 80–83 (1945). 40. Garside, M. J., Best subset search. Appl. Stat. 20 112–115 (1971). 41. Tennant, C. B. & White, M. L. Study of the distribution of some geochemical data. Economic Geology 54, 538–50 (1959). 42. Siniscalchi, A. et al. Flank instability structure of Mt. Etna inferred by a magnetotelluric survey. J. Geophys. Res. 117, B03216, doi: 10.1029/2011JB008657 (2012). 43. Branca, S. & Ferrara, V. The morphostructural setting of Mount Etna sedimentary basement (Italy): Implications for the geometry and volume of the volcano and its flank instability. Tectonophys 586, 46–64, doi: 10.1016/j.tecto.2012.11.011 (2013). 44. Etiope, G. & Martinelli, G. Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Interiors 129. 185–204 (2002). 45. Allard, P. et al. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391 (1991). 46. Giammanco, S., Gurrieri, S. & Valenza, M. Soil CO2 degassing on Mt. Etna (Sicily) during the period 1989–1993: Discrimination between climatic and volcanic influences. Bull. Volcanol. 57, 52–60 (1995). 47. Giammanco, S. & Bonfanti, P. Cluster analysis of soil CO2 data from Mt. Etna (Italy) reveals volcanic influences on temporal and spatial patterns of degassing. Bull. Volcanol. 71, 201–218, doi: 10.1007/s00445-008-0218-x (2009). 48. Grammakov, A. G. On the influence of same factors in the spreading of radioactive emanations under natural conditions. Zhur. Geofiziki 6, 123–148 (1936). 49. Bizzarri, A. Effects of permeability and porosity evolution on simulated earthquakes, J. Structural Geology 38, 243–253, doi: 10.1016/j.jsg.2011.07.009 (2012). 50. Wang, X., Li, Y., Du, J. & Zhou, X. Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiat. Meas. 60, 8–14 (2014). 51. Yasuoka, Y. et al. Preseismic changes in atmospheric radon concentration and crustal strain. Phys. Chem. Earth 34, 431–434 (2009).en
dc.description.obiettivoSpecifico6A. Monitoraggio ambientale, sicurezza e territorioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn2045-2322en
dc.contributor.authorNeri, M.en
dc.contributor.authorFerrera, E.en
dc.contributor.authorGiammanco, S.en
dc.contributor.authorCurrenti, G.en
dc.contributor.authorCirrincione, R.en
dc.contributor.authorPatanè, G.en
dc.contributor.authorZanon, V.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.departmentDipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Cataniaen
dc.contributor.departmentCentro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugalen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità degli Studi di Catania, Dip. Scienze della Terra-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptDipartimento di Scienze Biologiche, Geologiche e Ambientali – Università di Catania C.so Italia 57, 95129 Catania, Italy-
crisitem.author.deptUniversità degli Studi di Catania, Dip. Scienze della Terra-
crisitem.author.deptCentro de Vulcanologia e Avaliação de Riscos Geológicos - Universidade dos Açores-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.orcid0000-0003-2588-1441-
crisitem.author.orcid0000-0001-8650-5613-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Neri et al 2016 sci rep 24581.pdfMain article1.95 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

31
checked on Feb 10, 2021

Page view(s)

688
checked on Apr 20, 2024

Download(s)

6
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric