Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10295
DC FieldValueLanguage
dc.contributor.authorallAllard, P.; Institut de Physique du Globe de Paris, UMR7154 CNRS, Paris, Franceen
dc.contributor.authorallAiuppa, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallBani, P.; Laboratoire Magmas et Volcans, Clermont-Ferrand, Franceen
dc.contributor.authorallMétrich, N.; Institut de Physique du Globe de Paris, UMR7154 CNRS, Paris, Franceen
dc.contributor.authorallBertagnini, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italyen
dc.contributor.authorallGauthier, P. J.; Laboratoire Magmas et Volcans, Clermont-Ferrand, Franceen
dc.contributor.authorallShinohara, H.; Geological Survey of Japan, Tsukuba, Japanen
dc.contributor.authorallSawyer, G.; Department of Geography, University of Cambridge, UKen
dc.contributor.authorallParello, F.; DiSTEM, University of Palermo, Italyen
dc.contributor.authorallBagnato, E.; DiSTEM, University of Palermo, Italyen
dc.contributor.authorallPelletier, B.; IRD, Noumea, New Caledonia, Franceen
dc.contributor.authorallGaraebiti, E.; GEOHAZARD, Port Vila, Vanuatuen
dc.date.accessioned2016-04-13T09:57:53Zen
dc.date.available2016-04-13T09:57:53Zen
dc.date.issued2015-09-03en
dc.identifier.urihttp://hdl.handle.net/2122/10295en
dc.description.abstractAmbrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge ofmajor,minor, trace and radioactive volatile species fromAmbrymvolcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content (~93 mol%), similar S/Cl, Cl/ F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6–3.0, respectively) is attributed to deeper gasmelt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s−1 or 7800 tons d−1) demonstrates a prevalent degassing contribution (~65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes duringmedium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feedingbasalt: this latter contains relativelymodest dissolved amounts ofH2O(≤1.3wt%), CO2 (~0.10 wt%), S (0.075 wt%) and Cl (0.05 wt%), and its degassing under prevalent closed-systemconditions well reproduces the composition of emitted volcanic gases. Instead,we show that the gas discharge is sustained by a very high basalt supply rate of 25m3 s−1, from a large (~ 0.5 km3)magma reservoir probably emplaced at ~3.8 km depth below the summit caldera according to both the H2O-CO2 content of bubble-free melt inclusions and preliminary seismic data. Radioactive disequilibria in the volcanic gases constrain that this reservoir may be entirely renewed in about 240 days. The comparatively low magma extrusion rate requires extensive convective overturn of the basaltic magma column and recycling of the unerupted (denser) degassed magma in the plumbing system, in agreement with textural features of erupted products. Finally, our results suggest that the Indian MORB-type mantle source of Ambrym basalts is modestly enriched in slab-derived water and other volatiles, in agreement with the prevalent volcanoclastic nature of subducted sediments and their lower subduction rate under the central Vanuatu arc due to its collision with the D'Entrecasteaux Ridge.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries/304(2015)en
dc.subjectAmbrymen
dc.subjectVanuatuen
dc.subjectVolatile fluxesen
dc.subjectMagma degassing budgeten
dc.subjectMagma reservoiren
dc.subjectRadioactive disequilibriaen
dc.titleProdigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arcen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber378-402en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doi10.1016/j.jvolgeores.2015.08.022en
dc.relation.referencesAiuppa, A., 2009. Degassing of halogens from basaltic volcanism: insights from volcanic gas observations. Chem. Geol. 263, 99–109. Aiuppa, A., 2015. Volcanic gas monitoring. In: Schmidt, A., Frista, K.E., Elkins-Tanton, L.T. (Eds.), Volcanism and Global Environmental Change. Cambridge University Press, UK, pp. 81–96. Aiuppa, A., Federico, C., Giudice, G., Gurrieri, S., 2005a. Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy). Geophys. Res. Lett. 32 (13), L13309. http://dx.doi.org/10.1029/2005GL023207. Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., McGonigle, A.J.S., Valenza, M., 2005b. Emission of bromine and iodine from Mount Etna volcano. Geochem. Geophys. Geosyst. 6, Q08008. http://dx.doi.org/10.1029/ 2005GC000965. Aiuppa, A., Bertagnini, A., Métrich, N., Moretti, R., Di Muro, A., Liuzzo, M., Tamburello, G., 2010. A model of degassing for Stromboli volcano. Earth Planet. Sci. Lett. 295, 195–204. Aiuppa, A., Burton, M., Allard, P., Caltabiano, T., Giudice, G., Gurrieri, S., Liuzzo,M., Salerno, G., 2011. First observational evidence for the CO2-driven origin of Stromboli's major explosions. Solid Earth 2, 135–142. http://dx.doi.org/10.5194/se-2-135-2011. Allard, P., 1997. Endogenous magma degassing and storage at Mount Etna. Geophys. Res. Lett. 24, 2219–2222. Allard, P., Carbonnelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. Allard, P., Aiuppa, A., Loyer, H., 1999. Airborne determinations of gas and trace-metal fluxes in volcanic plumes of Mt. Etna and Stromboli. CEE Res. Contract ENV4-CT96- 288, Monitoring Volcanic Risks by Remote Sensing, Final Rep., Bruxelles, Belgium (55 pp.). Allard, P., Aiuppa, A., Loyer, H., Carrot, F., Gaudry, A., Pinte, G., Michel, A., Dongarra, G., 2000. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 27 (8), 1207–1210. Allard, P., Behnke, B., D'amico, S., Neri, M., Gambino, S., 2006. Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth-Sci. Rev. 78, 85–114. http://dx.doi.org/ 10.1016/j.earscirev.2006.04.00260. Allard, P., Aiuppa, A., Burton, M., Caltabiano, T., Federico, C., Salerno, G., La Spina, A., 2008. Crater gas emissions and the magma feeding systemof Stromboli Volcano. In: Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M. (Eds.), Learning from Stromboli Volcano: An Integrated Study of the 2002–2003 EruptionAGU Geophys. Monograph. Series 182. American Geophysical Union,Washington D.C., pp. 65–80. http://dx.doi.org/ 10.1029/GM182. Allard, P., Aiuppa, A., Bani, P., Métrich, N., Bertagnini, A., Gauthier, P.-J., Parello, F., Sawyer, G., Shinohara, H., Bagnato, E., Mariet, C., Garaebiti, E., Pelletier, B., 2009. Ambrym Basaltic Volcano (Vanuatu Arc): Volatile Fluxes, Magma Degassing Rate and Chamber Depth. AGU Fall Meeting, San Francisco, USA (Dec. 2009, VGP31). Allibone, R., Cronin, S.J., Charley, D.T., Neall, V.E., Stewart, R.B., Oppenheimer, C., 2012. Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environ. Geochem. Health 34 (2), 155–170. http://dx.doi.org/10.1007/ s10653-010-9338-2. Andres, R.J., Kasgnoc, A.D., 1998. A time-average inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103, 25,251–25,261. Andrews, J.E., Packham, G., Eade, J.V., Holdsworth, B.K., et al., 1973. Site 286—The Shipboard Scientific Party. Initial Reports of the Deep Sea Drilling Project 30. US Government Printing Office, Washington, DC, pp. 69–89. Arevalo Jr., R., McDonough, D.W., 2010. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85. http://dx.doi.org/10.1016/j.chemgeo. 2009.12.013. Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., D'Alessandro,W.,Mather, T.A.,McGonigle, A.J.S., Pyle, D.M., Wängberg, I., 2007. Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmos. Environ. 41, 7377–7388. http://dx.doi.org/10.1016/j.atmosenv.2007.05.060. Bagnato, E., Aiuppa, A., Parello, F., Allard, P., Shinohara, H., Liuzzo, M., Giudice, G., 2011. New clues on the contribution of Earth's volcanism to the global mercury cycle. Bull. Volcanol. 73, 497–510. http://dx.doi.org/10.1007/s00445-010-0419. Baker, R.G.A., Rehkämper, M., Hinkley, T.K., Nielsen, S.G., Toutain, J.P., 2009. Investigation of thallium fluxes from subaerial volcanism—implications for the present and past mass balance of thallium in the oceans. Geochim. Cosmochim. Acta 73, 6340–6359. http://dx.doi.org/10.1016/j.gca.2009.07.014. Bani, P., Oppenheimer, C., Tsanev, V.I., Carn, S.A., Cronin, S.J., Crimp, R., Charley, D., Lardy, M., Robert, T.R., 2009a. Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu. Bull. Volcanol. 71 (10), 1159–1168. http://dx.doi.org/10.1007/s00445- 009-0293-7. Bani, P., Allard, P., Charley, D., Garaebiti, E., 2009b. Impacts of troposheric volcanic gas plumes on terrestrial ecosystems: case of Ambrym volcano, Vanuatu archipelago. 11th Pacific Science Inter-Congress, Tahiti, March 2009, extended abstract (3 pp.). Bani, P., Oppenheimer, C., Allard, P., Shinohara, H., Lardy, M., Garaebiti, E., 2012. First estimate of volcanic SO2 budget for Vanuatu island arc. J. Volcanol. Geotherm. Res. 211–212, 36–46. http://dx.doi.org/10.1016/j.jvolgeores.2011.10.005. Beaglehole, J.C., 1961. The journals of Captain James Cook on his voyages of discovery II. The voyage of the Resolution and Adventure 1772-1775 (Hakluyt Soc. extra Ser. 36). Cambridge University Press. Beaumais, A., 2013. Géochimie de l'arc du Vanuatu: evolution spatio-temporelle des édifices volcaniques et des sources mantelliques Ph.D. Thesis, University of Bretagne occidentale, Brest, France (310 pp.). Beckett, F.M., Burton, M., Mader, H.M., Phillips, J.C., Polacci, M., Rust, A.C., Witham, F.,2014. Conduit convection driving persistent degassing at basaltic volcanoes.J. Volcanol. Geotherm. Res. 283, 19–35 (http://dx.doi.org/10.1016/j.jvolgeores.2014. 06.006). Bergeot, N., Bouin, M.N., Diament, M., Pelletier, B., Régnier, M., Calmant, S., Ballu, V., 2009. Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS measurements: evidence for a central Vanuatu locked zone. J. Geophys. Res. 114, B06405 (101029/2007JB005249). Bluth, G.J.S., Schnetzler, C.C., Krueger, A.J., Walter, L.S., 1993. The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature 336, 327–329. Bobrowski, N., Von Glasow, R., Giuffrida, G.B., Tedesco, D., Aiuppa, A., Yalire, M., Arellano, S., Johansson, M., Galle, B., 2015. Gas emission strength and evolution of the molar ratio of BrO/SO2 in the plume of Nyiragongo in comparison to Etna. J. Geophys. Res. 120, 277–291. Burton, M., Allard, P., Murè, F., La Spina, A., 2007. Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity. Science 317 (5835), 227–230. http://dx.doi.org/10.1126/science.114190. Burton, M., Sawyer, G.M., Granieri, D., 2013. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354. Calabrese, S., Aiuppa, A., Allard, P., Bagnato, E., Brusca, L., D'Alessandro, W., Parello, F., 2011. Atmospheric sources and sinks of volcanogenic elements at a basaltic volcano (Etna, Italy). Geochim. Cosmochim. Acta 75 (23), 7401–7740. Calmant, S., Pelletier, B., Lebellegard, P., Bevis, M., Taylor, F.W., Phillips, D.A., 2003. Newinsights on the tectonics along the New Hebrides subduction zone based on GPS results. J. Geophys. Res. 108 (B6), 2319–2339. Carignan, J., Hild, P.,Mevelle, G.,Morel, J., Yeghicheyan, D., 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand. Newslett. 25, 187–198. Carn, S.A., Flower, V., Telling, J., Yang, K., 2014. Satellite-based monitoring of global volcanic degassing. IAVCEI Meeting Cities on Volcanoes 8, Yogjakarta, Indonesia (Abstract 1.I.B 321). Cayol, V., Dieterich, J.H., Okamura, A.T.,Miklius, A., 2000. High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288, 2343–2346. Chaigneau, M., Tazieff, H., Fabre, R., 1960. Sur l'analyse des émanations volcaniques de l'archipel des Nouvelles-Hébrides. C.R. Acad. Sci. Paris 250, 1760–1765. Chase, T.E., Seekins, B.A., 1988. Submarine topography of the Vanuatu and southeastern Solomon islands regions. In: Greene, H.G.,Wong, F.L. (Eds.), Geology and offshore resources of Pacific Islands arcs—Vanuatu Region, Circum-Pacif. Count. Energy Mineral Resources, Earth Sci. Ser. 8, p. 35. Collot, J.Y., Daniel, J., Burne, R.V., 1985. Recent tectonics associated with the subduction/ collision of the d'Entrecasteaux Zone in the central New Hebrides. Tectonophysics 112, 325–356. Condomines, M., Sigmarsson, O., Gauthier, P.-J., 2010. A simple model of 222Rn accumulation leading to 210Pb excesses in volcanic rocks. Earth Planet. Sci. Lett. 293, 331–338. Crawford, A.J., Briqueu, L., Laporte, C., Hasenaka, T., 1995. Coexistence of Indian and Pacific ocean upper mantle reservoirs beneath the central New Hebrides island arc. In: Taylor, B., Natlund, J. (Eds.), Active margins and marginal basins of the western Pacific. Am. Geophysi. Union Geophys. Monograph 88, pp. 199–217. Cronin, S.J., Sharp, D.S., 2002. Environmental impacts on health fromcontinuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. Int. J. Environ. Health Res. 12, 109–123. Danyushevsky, L.V., Leslie, R.A., Crawford, A.J., Durance, P., 2004. Melt inclusions in primitive olivine phenocrysts: the role of localized reaction process in the origin of anomalous compositions. J. Petrol. 45, 2531–2553. Delgado-Granados, H., Gardenas, G.L., Piedad, S.N., 2001. Sulfur dioxide emissions from Popocatepetl volcano (Mexico): case study of a high-emission rate, passively degassing erupting volcano. J. Volcanol. Geotherm. Res. 108, 107–120. Di Muro, A., Villemant, B., Montagnac, G., Scaillet, B., Reynard, B., 2006. Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal Micro-Raman spectroscopy. Geochim. Cosmochim. Acta 70, 2868–2884. Fischer, T.P., 2008. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 42, 21–38. Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.J.S., Edmonds, M., Horrocks, L.A., 2002. A miniaturised UV spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 119, 241–254. http://dx.doi.org/10. 1016/S0377-0273 (02)00356-6. Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Zhao, Z.-D., Hu, Y.-K., 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62 (1), 1,959–1,975. http://dx.doi.org/10.1016/S0016- 7037(98)00121-5. Gauthier, P.-J., Condomines, M., 1999. 210Pb–226Ra radioactive disequilibria in recent lavas and radon degassing: inferences on the magma chamber dynamics at Stromboli and Merapi volcanoes. Earth Planet. Sci. Lett. 172, 111–126. Gauthier, P.J., Le Cloarec, M.-F., 1998. Variability of alkali and heavy metal fluxes released by Mt Etna volcano, Sicily, between 1991 and 1995. J. Volcanol. Geotherm. Res. 81, 311–326. Gauthier, P.-J., Le Cloarec, M.-F., Condomines, M., 2000. Degassing processes at Stromboli volcano inferred from short-lived disequilibria (210Pb-210Bi-210Po) in volcanic gases. J. Volcanol. Geotherm. Res. 102 (1/2), 1–19. Gerlach, T.M., 2004. Volcanic sources of tropospheric ozone-depleting trace gases. Geochem. Geophys. Geosyst. 5, Q09007. http://dx.doi.org/10.1029/2004GC000747. Ghiorso, M.S., Sack, R.O., 1995. Chemical Mass Transfer in Magmatic Processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212. Gill, J.B., Williams, R., Bruland, K., 1985. Eruption of basalt and andesite lava degasses 222Rn and 210Po. Geophys. Res. Lett. 12 (1), 17–20. Giordano, D., Russell, J.K., Dingwell, D.B., 2008. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134. Halmer, M.M., Schmincke, H.-U., Graf, H.F., 2002. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J. Volcanol. Geotherm. Res. 115, 511–528. Hartley, M., Maclennan, J., Edmonds, M., Thordarson, T., 2014. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet. Sci. Lett. 393, 120–131. Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at subduction zones. Rev. Mineral. 47, 319–370. Hinkley, T.K., Lamothe, P.J., Wilson, S.A., Finnegan, D.L., Gerlach, T.M., 1999. Metal emissions fromKilauea and a suggested revision of the estimatedworldwide metal output by quiescent degassing of volcanoes. Earth Planet. Sci. Lett. 170, 315–325. Kagoshima, T., Sano, Y., Takahata, N., Maruoka, T., Fischer, T.P., Hattori, K., 2015. Sulfur geodynamic cycle. Sci. Rep. 5, 8330. http://dx.doi.org/10.1038/srep08330. Kazahaya, K., Shinohara, H., Saito, G., 1994. Excessive degassing at Izu-Oshima volcano: magma convection in a conduit. Bull. Volcanol. 56, 207–216. Kazahaya, K., Shinohara, H., Uto, K., Odai, M., Nakahori, Y.,Mori, H., Lino, H.,Miyashita,M., Hirabayashi, J., 2004. Gigantic SO2 emission from Miyakejima volcano, Japan, caused by caldera collapse. Geology 32, 425–428. http://dx.doi.org/10.1130/G20399.1. Lambert, G., Le Cloarec, M.-F., Ardouin, B., Le Roulley, J.-C., 1982. Volcanic output of longlived radon daughters. J. Geophys. Res. 87 (C13), 11,103–11,108. Lambert, G., Le Cloarec, M.-F., Ardouin, B., Le Roulley, J.-C., 1985/86. Volcanic emission of radionuclides and magma dynamics. Earth Planet. Sci. Lett. 76, 185–192. Lange, R.A., Carmichael, I.S.E., 1990. Thermodynamic properties of silicate liquids with an emphasis on density, thermal expansion and compressibility. In: Nicholls, J., Russell, K. (Eds.), Mineralogical Society of America, Reviews in Mineralogy: Modern Methods of Igneous Petrology. vol. 24, pp. 25–64. Le Cloarec, M.-F., Pennisi, M., 2001. Radionuclides and sulfur content in Mount Etna plume in 1983–1995: new constraints on the magma feeding system. J. Volcanol. Geotherm. Res. 108, 141–155. Le Cloarec, M.-F., Pennisi, M., 2002. Radionuclide behavior in high-temperature gases from Satsuma Iwojima volcano, Japan. Earth Planets Space 54, 287–294. Legrand, D., Rouland, D., Frogneux,M., Carniel, R., Charley, D., Roult, G., Robin, C., 2005. Interpretation of very long period tremors at Ambrymvolcano, Vanuatu, as quasi-static displacement field related to two distinct magmatic sources. Geophys. Res. Lett. 32, L06314. http://dx.doi.org/10.1029/2004GL021968. Liu, Y., Samaha, N.T., Baker, D.R., 2007. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim. Cosmochim. Acta 71 (7), 1783–1799. MacCall, G.J.H., LeMaitre, R.W., Madoff, A., Robinson, G.P., Stephenson, P.J., 1970. The geology and geophysics of theAmbrymcaldera,NewHebrides. Bull. Volcanol. 34, 681–696. Mather, T.A., Pyle, D.M., Tsanev, V.I., McGonigle, A.J.S., Oppenheimer, C., Allen, A.G., 2006. A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J. Volcanol. Geotherm. Res. 149, 297–311. Mercier, M., Di Muro, A., Giordano, D., Métrich, N., Lesne, P., Pichavant, M., Scaillet, B., Clocchiatti, R., Montagnac, G., 2009. Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses. Geochim. Cosmochim. Acta 73, 197–217. http://dx.doi.org/10.1016/j.gca.2008.09.030. Métrich, N.,Wallace, P., 2008. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka, K., Tepley, F. (Eds.), Minerals, inclusions and volcanic processes. Rev. Mineral. Geochem 69, pp. 363–402. Métrich, N., Allard, P., Spilliaert, N., Andronico, D., Burton, M., 2004. Flank eruption of the alkali- and volatile-rich primitive basalt responsible of Mount Etna's evolution in the three decades. Earth Planet. Sci. Lett. 228, 1–17. Métrich, N., Allard, P., Aiuppa, A., Bani, P., Bertagnini, A., Belhadj, O., Di Muro, A., Garaebiti, E., Massare, D., Parello, F., Shinohara, H., 2011. Magma and volatile supply to postcollapse volcanism and block resurgence in Siwi caldera (Tanna island, Vanuatu arc). J. Petrol. 52, 1077–1105. http://dx.doi.org/10.1093/petrology/egr019. Métrich, N., Bertagnini, A., Garaebiti, E., Vergniolle, S., Bani, P., Beaumais, A., Neuville, D.R., 2015. Magma transfer and degassing budget during the 2009–2010 eruptive crisis of Mt Garet (Vanuatu arc). J. Volcanol. Geotherm. Res. http://dx.doi.org/10.1016/j. jvolgeores.2015.06.003 (this volume). Monzier, M., Robin, C., Eissen, J.P., Cotton, J., 1997. Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J. Volcanol. Geotherm. Res. 78, 1–29. Moune, S., Gauthier, P.J., Delmelle, P., 2010. Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 193, 232–244. Nemeth, K., Cronin, S.J., 2011. Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J. Volcanol. Geotherm. Res. 201, 194–209. http://dx.doi.org/10.1016/j.jvolgeores.2010.12.007. Nemeth, K., Cronin, S.J., Stewart, R.B., Charley, D., 2009. Intra- and extra-caldera volcaniclastic facies and geomorphic characteristics of a frequently active mafic island-arc volcano, Ambrym Island, Vanuatu. Sediment. Geol. 220 (3-4), 256–270. Newman, S., Lowenstern, J.B., 2002. VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28, 597–604. Nozaki, Y., Thomson, J., Turekian, K.K., 1976. The distribution of 210Pb and 210Po in surface waters of the Pacific Ocean. Earth Planet. Sci. Lett. 32, 304–312. Nriagu, J., 1989. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49. Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., Hirose, K., 1997. Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J. Petrol. 38 (10), 1331–1358. Pelletier, B., Calmant, S., Pillet, R., 1998. Current tectonics of the Tonga-New Hebrides region. Earth Planet. Sci. Lett. 164 (1-2), 263–276. Pennisi, M., Le Cloarec, M.-F., Lambert, G., Le Roulley, J.C., 1988. Fractionation of metals in volcanic emissions. Earth Planet. Sci. Lett. 88, 284–288. Phelan, J.M., Finnegan, D.L., Ballantine, D.S., Zoller,W.H., Hart, M.A., Moyers, J.L., 1982. Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September 1980. Geophysical Research Letters 9 (9), 1093–1096. Picard, C., Monzier,M., Eissen, J.-P., Robin, C., 1995. Concomitant evolution of tectonic environment and magma geochemistry, Ambrym volcano (Vanuatu, New Hebrides arc). In: Smellie, J.L. (Ed.), Volcanism associated with extension at consuming plate margin. Geol. Soc. America, Special Pub., pp. 135–154. Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394. Platt, U., Stutz, J., 2008. Differential Optical Absorption Spectroscopy: Principles and Applications, XV 597. Springer, Heidelberg, p. 272. Polacci, M., Baker, D.R., La Rue, A., Mancini, L., Allard, P., 2012. Degassing behaviour of vesiculated basaltic magmas: an example from Ambrym volcano, Vanuatu Arc. J. Volcanol. Geotherm. Res. 233–234, 55–64. http://dx.doi.org/10.1016/j.jvolgeores. 2012.04.019. Pyle, D., Mather, T.A., 2009. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem. Geol. 263, 110–121. http://dx.doi.org/10.1016/j.chemgeo.2008.11.013. Riuscitto, D.M., Wallace, P.J., Cooper, L.B., Plank, T., 2012. Global variations in H2O/Ce: 2. relationships to arc magma geochemistry and volatile fluxes. Geochem. Geophys. Geosyst. 13 (3), Q03025. http://dx.doi.org/10.1029/2011GC003887. Robin, C., Monzier, M., Eissen, J.P., Picard, C., Camus, G., 1991. Coexistence of HK and MK series in the pyroclastics related to the Ambrym caldera (Vanuatu, New Hebrides island arc). C.R. Acad. Sci. Paris Sér. II 313 (12), 1425–1432. Robin, C., Eissen, J.P., Monzier, M., 1993. Giant tuff cone and 12-km-wide associated caldera at Ambrym volcano (Vanuatu, New-Hebrides-arc). J. Volcanol. Geotherm. Res. 55 (3-4), 225–238. Rubin, K., 1997. Degassing of metals and metalloids from erupting seamount and midocean ridge volcanoes: observations and predictions. Geochim. Cosmochim. Acta 61, 3525–3542. Sawyer, G.M., Carn, S.A., Tsanev, V., Oppenheimer, C., Burton, M., 2008. Investigation into magma degassing at Nyiragongo volcano, Democratic Republic of the Congo. Geochem. Geophys. Geosyst. 9 (2), Q02017. http://dx.doi.org/10.1029/2007GC001829. Sawyer, G.M., Salerno, G., Le Blond, J.S., Martin, R.S., Spampinato, L., Roberts, T.J., Mather, T.A., Witt, M.L.I., Tsanev, V.I., Oppenheimer, C., 2011. Gas and aerosol emissions from Villarrica volcano, Chile. J. Volcanol. Geotherm. Res. 203, 62–75. http://dx.doi. org/10.1016/j.jvolgeores.2011.04.003. Shinohara, H., 2005. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J. Volcanol. Geotherm. Res. 143, 319–333. Shinohara, H., 2008. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys. 46. http://dx.doi.org/10.1029/2007RG000244. Shinohara, H., 2013. Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J. Volcanol. Geotherm. Res. 268, 46–63. Sigmarsson, O., Condomines,M., Gauthier, P.-J., 2015. Excess 210Po in 2010 Eyjafjallajökull tephra (Iceland): evidence for pre-eruptive gas accumulation. Earth Planet. Sci. Lett. 427, 66–73. http://dx.doi.org/10.1016/j.epsl.2015.06.054. Sorbadere, F., Schiano, P., Métrich, N., Garaebiti, E., 2011. Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contrib. Mineral. Petrol. 162, 999–1005. http://dx.doi.org/10.1007/s00410-011-0636-1. Sorbadere, F., Schiano, P., Métrich, N., Bertagnini, A., 2013. Small-scale coexistence of Island Arc- and enrichedMORB-type basalts in the central Vanuatu Arc. Contrib. Mineral. Petrol. http://dx.doi.org/10.1007/s00410-013-0928-8. Spilliaert, N., Allard, P., Métrich, N., Sobolev, I., 2006. Melt inclusion record of the conditions of ascent, degassing and eruption of primitive alkali basalt during the powerful 2002 flank eruption of Mount Etna. J. Geophys. Res. 111 (B4), B04203. http://dx.doi. org/10.1029/2005JB003934. Stix, J., 2007. Stability and instability of quiescently active volcanoes: the case of Masaya, Nicaragua. Geology 35, 535–538. Symonds, R.B., Reed, M.H., Rose,W.I., 1992. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes. Geochim. Cosmochim. Acta 56, 633–657. Turner, S.P., Peate, D.W., Hawkesworth, C.J., Eggins, S.M., Crawford, A.J., 1999. Two mantle domains and the time scales of fluid transfer beneath the Vanuatu arc. Geology 27 (11), 963–966. Van Roozendael, M., Fayt, C., 2001. WinDOAS 2.1 software user manual, BIRA-IASB. Belgian Institute for Space Aeronomy, Uccle, Brussels. Wallace, P.J., 2005. Volatiles in subduction zonemagmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240. Witter, J.B., Self, S., 2007. The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release. Bull. Volcanol. 69, 301–318. http://dx.doi.org/10.1007/s0045- 006-0075-4. Zelenski, M.E., Fischer, T.P., Maarten de Moor, J., Marty, B., Zimmermann, L., Ayalewd, D., Aleksey, N., Nekrasov, A.N., Karandashev, V.K., 2013. Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia. Chem. Geol. 357, 95–116. http://dx. doi.org/10.1016/j.chemgeo.2013.08.022.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0377-0273en
dc.relation.eissn1872-6097en
dc.contributor.authorAllard, P.en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorBani, P.en
dc.contributor.authorMétrich, N.en
dc.contributor.authorBertagnini, A.en
dc.contributor.authorGauthier, P. J.en
dc.contributor.authorShinohara, H.en
dc.contributor.authorSawyer, G.en
dc.contributor.authorParello, F.en
dc.contributor.authorBagnato, E.en
dc.contributor.authorPelletier, B.en
dc.contributor.authorGaraebiti, E.en
dc.contributor.departmentInstitut de Physique du Globe de Paris, UMR7154 CNRS, Paris, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentLaboratoire Magmas et Volcans, Clermont-Ferrand, Franceen
dc.contributor.departmentInstitut de Physique du Globe de Paris, UMR7154 CNRS, Paris, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italyen
dc.contributor.departmentLaboratoire Magmas et Volcans, Clermont-Ferrand, Franceen
dc.contributor.departmentGeological Survey of Japan, Tsukuba, Japanen
dc.contributor.departmentDepartment of Geography, University of Cambridge, UKen
dc.contributor.departmentDiSTEM, University of Palermo, Italyen
dc.contributor.departmentIRD, Noumea, New Caledonia, Franceen
dc.contributor.departmentGEOHAZARD, Port Vila, Vanuatuen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptLaboratoire Pierre Sue, CNRS-CEA, CE-Saclay, 91191 Gif sur Yvette, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptGeological Survey of Japan, AIST - Tsukuba, Japan-
crisitem.author.deptDepartment of Geography, University of Cambridge-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIRD, Noumea, New Caledonia, France-
crisitem.author.deptGEOHAZARD, Port Vila, Vanuatu-
crisitem.author.orcid0000-0001-7836-3117-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0002-1041-2071-
crisitem.author.orcid0000-0003-4075-2242-
crisitem.author.orcid0000-0003-2285-0842-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Allard et al JVGR_2015.pdfMain article4.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 10, 2021

Page view(s) 50

473
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric