Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10293
DC FieldValueLanguage
dc.contributor.authorallCappello, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallGanci, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPerez, N. M.en
dc.contributor.authorallHernandez, P. A.en
dc.contributor.authorallSilva, S. V.en
dc.contributor.authorallCabral, J.en
dc.contributor.authorallDel Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2016-04-11T08:16:13Zen
dc.date.available2016-04-11T08:16:13Zen
dc.date.issued2016-03-18en
dc.identifier.urihttp://hdl.handle.net/2122/10293en
dc.description.abstractSatellite remote sensing techniques and lava flow forecasting models have been combined to enable a rapid response during effusive crises at poorly monitored volcanoes. Here we used the HOTSAT satellite thermal monitoring system and the MAGFLOW lava flow emplacement model to forecast lava flow hazards during the 2014–2015 Fogo eruption. In many ways this was one of the major effusive eruption crises of recent years, since the lava flows actually invaded populated areas. Combining satellite data and modeling allowed mapping of the probable evolution of lava flow fields while the eruption was ongoing and rapidly gaining as much relevant information as possible. HOTSAT was used to promptly analyze MODIS and SEVIRI data to output hot spot location, lava thermal flux, and effusion rate estimation. This output was used to drive the MAGFLOW simulations of lava flow paths and to continuously update flow simulations. We also show how Landsat 8 OLI and EO-1 ALI images complement the field observations for tracking the flow front position through time and adding considerable data on lava flow advancement to validate the results of numerical simulations. The integration of satellite data and modeling offers great promise in providing a unified and efficient system for global assessment and real-time response to effusive eruptions, including (i) the current state of the effusive activity, (ii) the probable evolution of the lava flow field, and (iii) the potential impact of lava flows.en
dc.description.sponsorshipAcknowledgments Thanks are due to European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) for SEVIRI data (www.eumetsat.int) and to National Aeronautics and Space Administration (NASA) for MODIS data (modis.gsfc.nasa.gov). Landsat 8 OLI and Eo-1 ALI images are courtesy of the U.S. Geological Survey (earthexplorer. usgs.gov). We are grateful to the Copernicus emergency management service (emergency.copernicus.eu/ mapping/list-of-components/EMSR111) for mapping the actual lava flow field by Cosmo-SkyMed and Pleiades images. We thank the Cartográfica de Canarias, S.A. (www.grafcan.es) for making the Digital Elevation Model of Fogo Island available. HOTSAT and MAGFLOW were developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics, organized by INGV-CT and UNICT (Italy).en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Geophysical Research: Solid Earthen
dc.relation.ispartofseries4/121 (2016)en
dc.subjectFogo eruptionen
dc.subjectlava flow hazarden
dc.titleLava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verdeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2290–2303en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1002/2015JB012666en
dc.relation.referencesAmelung, F., and S. Day (2002), InSAR observations of the 1995 Fogo, Cape Verde, eruption: Implications for the effects of collapse events upon island volcanoes, Geophys. Res. Lett., 29(12), 1606, doi:10.1029/2001GL013760. Barnes, W. L., T. S. Pagano, and V. V. Salomonson (1998), Pre-launch characteristics of Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Trans. Geosci. Remote Sens., 36, 1088–1100. Bilotta, G., E. Rustico, A. Herault, A. Vicari, G. Russo, C. Del Negro, and G. Gallo (2011), Porting and optimizing MAGFLOW on CUDA, Ann. Geophys., 54(5), 580–591, 1593–5213, doi:10.4401/ag-5341. Bilotta, G., A. Cappello, A. Hérault, A. Vicari, G. Russo, and C. Del Negro (2012), Sensitivity analysis of the MAGFLOW Cellular Automaton model for lava flow simulation, Environ. Modell. Software, 35, 122–131, doi:10.1016/j.envsoft.2012.02.015.Bilotta, G., A. Hérault, A. Cappello, G. Ganci, and C. Del Negro (2015), GPUSPH: a smoothed particle hydrodynamics model for the thermal and rheological evolution of lava flows, in Detecting, Modelling and Responding to Effusive Eruptions, edited by A. Harris et al., Geol. Soc. London, Spec. Publ., 426, doi:10.1144/SP426.24. Calvari, S., and H. Pinkerton (1998), Formation of lava tubes and extensive flow field during the 1991–93 eruption of Mount Etna, J. Geophys. Res., 103(B11), 27,291–27,302, doi:10.1029/97JB03388. Cappello, A., A. Hérault, G. Bilotta, G. Ganci, and C. Del Negro (2015a), MAGFLOW: A physics-based model for the dynamics of lava flow emplacement, in Detecting, Modelling and Responding to Effusive Eruptions, edited by A. Harris et al., Geol. Soc. London, Spec. Publ., 426, doi:10.1144/SP426.16. Cappello, A., V. Zanon, C. Del Negro, T. J. L. Ferreira, and M. G. P. S. Queiroz (2015b), Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal), Terra Nova, 27(2), 156–161, doi:10.1111/ter.12143. Chander, G., B. L. Markham, and D. L. Helder (2009), Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sens. Environ., 113(5), 893–903, doi:10.1016/j.rse.2009.01.007. Cordonnier, B., E. Lev, and F. Garel (2015), Benchmarking lava-flow models, in Detecting, Modelling and Responding to Effusive Eruptions, edited by A. Harris et al., Geol. Soc. London, Spec. Publ., 426, doi:10.1144/SP426.7. Courtney, R. C., and R. S. White (1986), Anomalous heat flow and geoid across the Cape Verde Rise: Evidence for dynamic support from a thermal plume in the mantle, Geophys. J. R. Astron. Soc., 87, 815–867. Crisci, G. M., R. Rongo, S. Di Gregorio, and W. Spataro (2004), The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna, J. Volcanol. Geotherm. Res., 132( 2–3), 253–267, doi:10.1016/S0377-0273(03)00349-4. Day, S., J. C. Carracedo, H. Gillou, J. F. B. D. Fonseca, S. I. N. Heleno, J. Pais, and E. Badiola (2000), Comparison and cross-checking of evidence for the location and type of historical eruptions in ocean island volcanoes. in Volcanoes, Earthquakes and Archeology, edited by W. McGuire, Geol. Soc. London, Spec. Publ., 171, 281–306, doi:10.1144/GSL.SP.2000.171.01.21. Day, S. J., S. I. N. Heleno da Silva, and J. F. B. D. Fonseca (1999), A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands, J. Volcanol. Geotherm. Res., 94, 191–218. Del Negro, C., L. Fortuna, A. Herault, and A. Vicari (2008), Simulations of the 2004 lava flow at Etna volcano by the MAGFLOW Cellular Automata model, Bull. Volcanol., 70, 805–812, doi:10.1007/s00445-007-0168-8. Del Negro, C., A. Cappello, M. Neri, G. Bilotta, A. Herault, and G. Ganci (2013), Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations, Sci. Rep., 3, 3493, doi:10.1038/srep03493. Dietterich, H. R., M. P. Poland, D. A. Schmidt, K. V. Cashman, D. R. Sherrod, and A. T. Espinosa (2012), Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i, with synthetic aperture radar (SAR) coherence, Geochem. Geophys. Geosyst., 13, Q05001, doi:10.1029/ 2011GC004016. Dionis, S. M., et al. (2015a), Diffuse volcanic gas emission and thermal energy release from the summit crater of Pico do Fogo, Cape Verde, Bull. Volcanol., 77(2), doi:10.1007/s00445-014-0897-4. Dionis, S. M., et al. (2015b), Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa, Earth Planets Space, 67, 48, doi:10.1186/s40623-015-0219-x. Favalli, M., M. T. Pareschi, A. Neri, and I. Isola (2005), Forecasting lava flow paths by a stochastic approach, Geophys. Res. Lett., 32, L03305, doi:10.1029/2004GL021718. Folch, A. (2012), A review of tephra transport and dispersal models: Evolution, current status, and future perspectives, J. Volcanol. Geotherm. Res., 235, 96–115, doi:10.1016/j.jvolgeores.2012.05.020. Ganci, G., A. Vicari, S. Bonfiglio, G. Gallo, and C. Del Negro (2011a), A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images, Geomatics, Nat. Hazards Risk, 2, 279–290, doi:10.1080/19475705.2011.578263. Ganci, G., A. Vicari, L. Fortuna, and C. Del Negro (2011b), The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data, Ann. Geophys., 54(5), 544–550, doi:10.4401/ag-5338. Ganci, G., A. J. L. Harris, C. Del Negro, Y. Guéhenneux, A. Cappello, P. Labazuy, S. Calvari, and M. Gouhier (2012a), A year of fountaining at Etna: Volumes from SEVIRI, Geophys. Res. Lett., 39, L06305, doi:10.1029/2012GL051026. Ganci, G., A. Vicari, A. Cappello, and C. Del Negro (2012b), An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling, Remote Sens. Environ., 119, 197–207, doi:10.1016/j.rse.2011.12.021. Ganci, G., M. R. James, S. Calvari, and C. Del Negro (2013), Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements, Geophys. Res. Lett., 40, 5058–5063, doi:10.1002/ grl.50983. Ganci, G., G. Bilotta, A. Cappello, A. Hérault, C. Del Negro (2015), HOTSAT: A multiplatform system for the satellite thermal monitoring of volcanic activity, in Detecting, Modelling and Responding to Effusive Eruptions, edited by A. Harris et al., Geol. Soc. London, Spec. Publ., 426, doi:10.1144/SP426.21. Giordano, D., and D. B. Dingwell (2003), Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions, Bull. Volcanol., 65, 8–14. Govaerts, Y., A. Arriaga, and J. Schmetz (2001), Operational vicarious calibration of the MSG/SEVIRI solar channels, Adv. Space Res., 28, 21–30. Griffiths, R. W. (2000), The dynamics of lava flows, Annu. Rev. Fluid Mech., 32, 477–518, doi:10.1146/annurev.fluid.32.1.477. Harris, A., and S. Rowland (2001), FLOWGO: A kinematic thermorheological model for lava flowing in a channel, Bull. Volcanol., 63, 20–44, doi:10.1007/s004450000120. Harris, A. J. L., and S. K. Rowland (2009), Effusion rate controls on lava flow length and the role of heat loss: A review, in Studies in Volcanology: The Legacy of George Walker, Spec. Publ. of IAVCEI, vol. 2, pp. 33–51, Geol. Soc., London. Harris, A. J. L., S. Blake, D. Rothery, and N. Stevens (1997a), A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real-time thermal volcano monitoring, J. Geophys. Res., 102, 7985–8003, doi:10.1029/ 96JB03388. Harris, A. J. L., A. L. Butterworth, R. W. Carlton, I. Downey, P. Miller, P. Navarro, and D. A. Rothery (1997b), Low-cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus, Bull. Volcanol., 59, 49–64. Harris, A. J. L., R. A. Vaughan, and D. A. Rothery (1995), Volcano detection and monitoring using AVHRR data: The Krafla eruption, 1984, Int. J. Remote Sens., 16, 1001–1020, doi:10.1080/01431169508954460. Harris, A. J. L., L. P. Flynn, L. Keszthelyi, P. J. Mouginis-Mark, S. K. Rowland, and J. A. Resing (1998), Calculation of lava effusion rates from Landsat TM data, Bull. Volcanol., 60(1), 52–71, doi:10.1007/s004450050216. Harris, A. J. L., J. B. Murray, S. E. Aries, M. A. Davies, L. P. Flynn, M. J. Wooster, R. Wright, and D. A. Rothery (2000), Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms, J. Volcanol. Geotherm. Res., 102, 237–269, doi:10.1016/S0377-0273(00) 00190-6.Harris, A. J. L., J. Dehn, M. R. Patrick, S. Calvari, M. Ripepe, and L. Lodato (2005), Lava effusion rates from hand-held thermal infrared imagery: An example from the June 2003 effusive activity at Stromboli, Bull. Volcanol., 68, 107–117, doi:10.1007/s00445-005-0425-7. Harris, A. J. L., J. Dehn, and S. Calvari (2007), Lava effusion rate definition and measurement: A review, Bull. Volcanol., 70, 1–22. Heleno da Silva, S. I. N., S. J. Day, and J. F. B. D. Fonseca (1999), Fogo Volcano, Cape Verde Islands: Seismicity-derived constraints on the mechanism of the 1995 eruption, J. Volcanol. Geotherm. Res., 94, 219–231. Herault, A., A. Vicari, A. Ciraudo, and C. Del Negro (2009), Forecasting lava flow hazard during the 2006 Etna eruption: using the MAGFLOW cellular automata model, Comput. Geosci., 35, 1050–1060, doi:10.1016/j.cageo.2007.10.008. Hidaka, M., A. Goto, S. Umino, and E. Fujita (2005), VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification, Geochem. Geophys. Geosyst., 6, Q07008, doi:10.1029/2004GC000869. Kereszturi, G., A. Cappello, G. Ganci, J. Procter, K. Nemeth, C. Del Negro, and S. J. Cronin (2014), Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—Implication for volcanic hazard assessment, Bull. Volcanol., 76, 879, doi:10.1007/s00445-014- 0879-6. Kervyn, M., F. Kervyn, R. Goossens, S. K. Rowland, and G. G. J. Ernst (2007), Mapping volcanic terrain using high-resolution and 3D satellite remote sensing, Mapping Hazardous Terrain Using Remote Sensing, edited by R. M. Teeuw, Geol. Soc. London, Spec. Publ., 283, 5–30, doi:10.1144/SP283.2. Lautze, N. C., A. J. L. Harris, J. E. Bailey, M. Ripepe, S. Calvari, J. Dehn, S. Rowland, and K. Evans-Jones (2004), Pulsed lava effusion at Mount Etna during 2001, J. Volcanol. Geotherm. Res., 137, 231–246, doi:10.1016/j.jvolgeores.2004.05.018. Markham, B. L., J. A. Barsi, G. Kvaran, L. Ong, E. Kaita, S. Biggar, J. Czapla-Myers, N. Mishra, and D. Helder (2014), Landsat-8 Operational Land Imager radiometric calibration and stability, Remote Sens., 6, 12,275–12,308, doi:10.3390/rs61212275. Pyle, D. M., T. A. Mather, and J. Biggs (2013), Remote sensing of volcanoes and volcanic processes: Integrating observation and modelling introduction, in Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modeling, edited by D. M. Pyle, T. A. Mather, and J. Biggs, Geol. Soc. London, Spec. Publ., 380, 1–13. Ribeiro, O. (1960), A Ilha do Fogo e as suas erupcoes (2nd edn.). (The island of Fogo and its eruptions) Memorias, serie geografica I. Publ. Junta de Investigacoes do Ultramar, Ministerio do Ultramar, Lisbon, Portugal. Rust, D., and M. Neri (1996), The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily, in Volcano Instability on the Earth and Other Planets, edited by W. M. McGuire, A. P. Jones, and J. Neuberg, Geol. Soc. London, Spec. Publ., 110, 193–208. Scifoni, S., M. Coltelli, M. Marsella, C. Proietti, Q. Napoleoni, A. Vicari, and C. Del Negro (2010), Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption, J. Volcanol. Geotherm. Res., 192, 16–26, doi:10.1016/j.jvolgeores.2010.02.002. Texier-Teixeira, P., F. Chouraqui, A. Perrillat-Collomb, F. Lavigne, J. R. Cadag, and D. Grancher (2014), Reducing volcanic risk on Fogo Volcano, Cape Verde, through a participatory approach: Which outcome?, Nat. Hazards Earth Syst. Sci., 14, 2347–2358, doi:10.5194/nhess-14-2347- 2014. Vicari, A., A. Ciraudo, C. Del Negro, A. Herault, and L. Fortuna (2009), Lava flow simulations using effusion rates from thermal infrared satellite imagery during the 2006 Etna eruption, Nat. Hazards, 50, 539–550, doi:10.1007/s11069-008-9306-7. Vicari, A., G. Bilotta, S. Bonfiglio, A. Cappello, G. Ganci, A. Herault, E. Rustico, G. Gallo, and C. Del Negro (2011a), LAV@HAZARD: A Web-GIS interface for volcanic hazard assessment, Ann. Geophys., 54(5), 662–670, doi:10.4401/ag-5347. Vicari, A., G. Ganci, B. Behncke, A. Cappello, M. Neri, and C. Del Negro (2011b), Near-real-time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption, Geophys. Res. Lett., 38, L13317, doi:10.1029/2011GL047545. Walker, G. P. L. (1973), Lengths of lava flows, R. Soc. Lond. Philos. Transact. A, 274, 107–118, doi:10.1098/rsta.1973.0030. Wooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman (2005), Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, Geophys. Res. Lett., 110, D24311, doi:10.1029/2005JD006318. Wright, R., S. Blake, A. J. L. Harris, and D. Rothery (2001), A simple explanation for the space-based calculation of lava eruption rates, Earth Planet. Sci. Lett., 192, 223–233. Wright, R., H. Garbeil, and A. J. L. Harris (2008), Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: A method for near-real-time volcanic hazard assessment, Geophys. Res. Lett., 35, L19307, doi:10.1029/2008GL035228.en
dc.description.obiettivoSpecifico3V. Dinamiche e scenari eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorCappello, A.en
dc.contributor.authorGanci, G.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorPerez, N. M.en
dc.contributor.authorHernandez, P. A.en
dc.contributor.authorSilva, S. V.en
dc.contributor.authorCabral, J.en
dc.contributor.authorDel Negro, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptEnvironmental Research Division, ITER, Tenerife/Spain-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-9947-8789-
crisitem.author.orcid0000-0002-9914-1107-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0003-4707-515X-
crisitem.author.orcid0000-0001-5734-9025-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Cappello_et_al-2016-Journal_of_Geophysical_Research__Solid_Earth.pdfmain article7.1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

29
checked on Feb 10, 2021

Page view(s) 50

468
checked on Apr 20, 2024

Download(s)

43
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric