Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10282
DC FieldValueLanguage
dc.contributor.authorallGiudicepietro, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallD'Auria, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMartini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2016-03-18T09:26:11Zen
dc.date.available2016-03-18T09:26:11Zen
dc.date.issued2016en
dc.identifier.urihttp://hdl.handle.net/2122/10282en
dc.description.abstractThe aim of this paper is to discuss a novel approach to provide insights on the probability of vent opening in calderas, using a dynamic model of sill intrusion. The evolution of the stress field is the main factor that controls the vent opening processes in volcanic calderas. On the basis of previous studies, we think that the intrusion of sills is one of the most common mechanism governing caldera unrest. Therefore, we have investigated the spatial and temporal evolution of the stress field due to the emplacement of a sill at shallow depth to provide insight on vent opening probability. We carried out several numerical experiments by using a physical model, to assess the role of the magma properties (viscosity), host rock characteristics (Young’s modulus and thickness), and dynamics of the intrusion process (mass flow rate) in controlling the stress field. Our experiments highlight that high magma viscosity produces larger stress values, while low magma viscosity leads to lower stresses and favors the radial spreading of the sill. Also high-rock Young’s modulus gives high stress intensity, whereas low values of Young’s modulus produce a dramatic reduction of the stress associated with the intrusive process. The maximum intensity of tensile stress is concentrated at the front of the sill and propagates radially with it, over time. In our simulations, we find that maximum values of tensile stress occur in ringshaped areas with radius ranging between 350 m and 2500 m from the injection point, depending on the model parameters. The probability of vent opening is higher in these areasen
dc.description.sponsorshipThis work was supported by the MED-SUV Project funded by the European Union (FP7 Grant Agreement No. 308665).en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlagen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries5/173 (2016)en
dc.subjectCaldera dynamicsen
dc.subjectvolcanic unresten
dc.subjectsill intrusionen
dc.subjectvent opening probabilityen
dc.subjectvolcanic hazarden
dc.titleInsight into Vent Opening Probability in Volcanic Calderas in the Light of a Sill Intrusion Modelen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1703–1720en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.identifier.doi10.1007/s00024-015-1190-yen
dc.relation.referencesACOCELLA, V. (2007), Understanding caldera structure and development: An overview of analogue models compared to natural calderas, Earth Sci. Rev., 85, 125–160, doi:10.1016/j.earscirev. 2007.08.004. ACOCELLA, V., DI LORENZO, R., NEWHALL, C., SCANDONE, R. (2015). An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives. Reviews of Geophysics, doi:10.1002/ 2015RG000492 AMORUSO, A., CRESCENTINI, L., LINDE, A.T., SACKS, I.S., SCARPA, R. and ROMANO, P., (2007), A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei, Geophys. Res. Lett., 34, L22313, doi:10.1029/2007GL031644. BAGNARDI, M., F. AMELUNG, and M. P. POLAND (2013), A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Gala´pagos Islands, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2013.07.016. BARENBLATT, G.I., (1962), The mathematical theory of equilibrium cracks in brittle fracture, in Advances in Applied Mechanics, edited by H. L. Dryden and Th. Von Karman, pp. 55–129, Academic Press, New York. BARTOLINI, S., CAPPELLO, A., MARTI´, J. and DEL NEGRO, C. (2013), QVAST: A new Quantum GIS plugin for estimating volcanic susceptibility, Nat. Hazards Earth Syst. Sci., 13(11), 3031–3042, doi:10.5194/nhess-13-3031-2013 BARTOLINI, S., GEYER, A., MARTI´, J., PEDRAZZI, D., and AGUIRRE-DIA´ Z G. (2014), Volcanic hazard on Deception Island (South Shetland Islands, Antarctica), J. Volcanol. Geotherm. Res., 150–168, doi:10.1016/j.jvolgeores.2014.08.009. BEBBINGTON, M. S., and CRONIN, S. J. (2011), Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model, Bull. Volcanol., 73, 55–72, doi:10.1007/s00445-010-0403-6. BECERRIL, L., CAPPELLO, A., GALINDO, I., NERI, M., and DEL NEGRO, C. (2013), Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain), J. Volcanol. Geotherm. Res., 257, 21–30, doi:10.1016/j.jvolgeores. 2013.03.005. BECERRIL, L., BARTOLINI, S., SOBRADELO, R., MARTI´, J., MORALES, J. M. and GALINDO, I. (2014), Long-term volcanic hazard assessment on El Hierro (Canary Islands), Nat. Hazards Earth Syst. Sci., 14, 1853–1870, doi:10.5194/nhess-14-1853-2014. BEVILACQUA, A., ISAIA, R., NERI, A., VITALE, S., ASPINALL, W. P., BISSON, M., et al. (2015), Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J. Geophys. Res. Solid Earth, 120(4), 2309–2329. doi:10.1002/2014JB011775 BROWNING, J., and GUDMUNDSSON, A. (2015), Caldera faults capture and deflect inclined sheets: an alternative mechanism of ring dike formation, Bull. Volcanol., 77, 1–13, doi:10.1007/s00445- 014-0889-4. BUNGER, A. P., and CRUDEN, A. R. (2011a), Modeling the growth of laccoliths and large mafic sills: Role of magma body forces, J. Geophys. Res., 116, B02,203, doi:10.1029/2010JB007648. BUNGER, A. P., and CRUDEN, A. R. (2011b), Corrections to ‘‘Modeling the growth of laccoliths and large mafic sills: Role of magma body forces’’, J. Geophys. Res., 116, B08,211, doi:10. 1029/2011JB008618. CAPPELLO, A., NERI, M., ACOCELLA, V., GALLO, G., VICARI, A. and DEL NEGRO, C. (2012), Spatial vent opening probability map of Etna volcano (Sicily, Italy), Bull. Volcanol., 74, 2083–2094, doi:10.1007/s00445-012-0647-4. CAPPELLO, A., BILOTTA, G., NERI, M. and DEL NEGRO, C. (2013), Probabilistic modeling of future volcanic eruptions at Mount Etna, J. Geophys. Res. Solid Earth, 118, 1925–1935, doi:10. 1002/jgrb.50190. CHADWICK, W.W., JR., GEIST, D. J., JO ´ NSSON, S., POLAND, M., JOHNSON, D. J. and MEERTENS, C. M. (2006), A volcano bursting at the seams: inflation, faulting, and eruption at Sierra Negra volcano, Gala´pagos. Geology, 34, 1025–1028, doi:10.1130/ G22826A.1 CHADWICK, W. W., JR., JO ´ NSSON, S., GEIST, D. J., POLAND, M., JOHNSON, D. J., BATT, S., HARPP, K. S. and RUIZ, A. (2011), The May 2005 eruption of Fernandina volcano, Gala´pagos: The first circumferential dike intrusion observed by GPS and InSAR, Bull. Volcanol., 73, 679–697, doi:10.1007/s00445-010-0433-0. CHANG, W.-L., SMITH, R.B., FARRELL, J. and PUSKAS, C.M., (2010), An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations Geophys. Res. Lett., 37, L23302, doi:10.1029/2010GL045451. CHIODINI, G., VANDEMEULEBROUCK, J., CALIRO, S., D’AURIA, L., DE MARTINO, P., MANGIACAPRA, A., PETRILLO, Z. (2015). Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet. Sci. Lett., 414, 58–67, doi:10.1016/j.epsl.2015.01.012. CHOUET, B. A., and MATOZA, R. S. (2013), A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption, J. Volcanol. Geotherm. Res., 252, 108–175, doi:10. 1016/j.jvolgeores.2012.11.013. COLE, J. W., MILNER, D. M. and SPINKS, K. D. (2005), Calderas and caldera structures: a review, Earth Sci. Rev., 69, 1–26, doi:10. 1016/j.earscirev.2004.06.004. CONNOR, C. B., and CONNOR, L. J. (2009), Estimating spatial density with kernel methods, in Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, edited by C. B. Connor, N. A. Chapman, and L. J. Connor, pp. 346–368, Cambridge University Press. CONNOR, C. B., and HILL, B. E. (1995), Three nonhomogeneous Poisson models for the probability of basaltic volcanism: Application to the Yucca Mountain region, Nevada, J. Geophys. Res., 100(B6), 10,107–10,125. CORBI, F., RIVALTA, E., PINEL, V., MACCAFERRI, F., BAGNARDI, M., ACOCELLA, V., (2015), How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes, Earth Planet. Sci. Lett., in press. COSTA, A. and MACEDONIO, G., (2003), Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows. Nonlin. Processes Geophys., 10, 545–555, doi:10.5194/ npg-10-545-2003. D’AURIA, L., MASSA, B., CRISTIANO, E., DEL GAUDIO, C., GIUDICEPIETRO, F., RICCIARDI, G. and RICCO, C. (2014), Retrieving the Stress Field Within the Campi Flegrei Caldera (Southern Italy) Through an Integrated Geodetical and Seismological Approach. Pure Appl. Geophys, doi:10.1007/s00024-014-1004-7 D’AURIA, L., GIUDICEPIETRO, F., AQUINO, I., BORRIELLO, G., DEL GAUDIO, C., LO BASCIO, D., MARTINI, M., RICCIARDI, G. P., RICCIOLINO, P. and RICCO, C. (2011), Repeated fluidtransfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989-2010), J. Geophys. Res., 116, B04,313, doi:10.1029/ 2010JB007837. D’AURIA, L., PEPE, S., CASTALDO, R., GIUDICEPIETRO, F., MACEDONIO, G., RICCIOLINO, P., TIZZANI, P., CASU, F., LANARI, R., MANZO, M., MARTINI, M., SANSOSTI, E., ZINNO, I. (2015), Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera, Sci. Rep., 2015 (accepted). DEL GAUDIO, C., I. AQUINO, G. P. RICCIARDI, C. RICCO, and R. SCANDONE (2010), Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009, J. Volcanol. Geotherm. Res., 195, 48–56, doi:10.1016/j.jvolgeores. 2010.05.014. FAVALLI, M., CHIRICO, G. D., PAPALE, P., PARESCHI, M. T. and BOSCHI, E. (2009), Lava flow hazard at Nyiragongo volcano, D.R.C. 1. Model calibration and hazard mapping, Bull. Volcanol., 71, 363–374, doi:10.1007/s00445-008-0233-y. FEIGL, K.L., LE ME´VEL, H., ALI, S.T., CORDOVA, L., ANDERSEN, N.L., DEMETS, C., and SINGER, B.S. (2014), Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) 2007–2012, Geophys. J. Int., 196, 885–901, doi:10.1093/ gji/ggt438. FELPETO, A., MARTI´, J. and ORTIZ, R. (2007), Automatic GIS-based system for volcanic hazard assessment, J. Volcanol. Geotherm. Res., 166, 106–116, doi:10.1016/j.jvolgeores.2007.07.008. FOURNIER, T.J., PRITCHARD, M.E. and RIDDICK, S.N. (2010), Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis, Geochem. Geophys., Geosyst., 11(1), Q01003, doi:10.1029/2009GC002558. GEYER, A., and MARTI´, J. (2008), The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes, J. Volcanol. Geotherm. Res., 175, 334–354, doi:10.1016/j.jvolgeores.2008.03.017. GEYER, A., and MARTI´, J. (2014), A short review of our current understanding of the development of ring faults during collapse caldera formation, Front. Earth Sci., 2(22), 1–13, doi:10.3389/ feart.2014.00022. GUDMUNDSSON, A. (1988), Formation of collapse calderas, Geology, 16, 808–810. GUDMUNDSSON, A. (2011), Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 50–64, doi:10.1016/j.tecto.2009.10.015 GUIDOBONI, E. and CIUCCIARELLI, C. (2011), The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD (2011)), Bull. Volcanol., 73, 655–677, doi:10.1007/s00445-010-0430-3. HEAP, M. J., BAUD, P., MEREDITH, P. G., VINCIGUERRA, S. and REUSCHLE´ , T. (2014), The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling, Solid Earth, 25, 25–44, doi:10.5194/se-5-25-2014. ISAIA, R., D’ANTONIO, M., DI VITO, M.A., DELL’ERBA, F. and ORSI, G. (2004), The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 133, 171–192, doi:10.1016/S0377-0273(03)00397-4. JAXYBULATOV, K., SHAPIRO, N.M., KOULAKOV, I., MORDRET, A., LANDE´S, M. and SENS-SCHO¨ NFELDER, C. (2014), A large magmatic sill complex beneath the Toba caldera, Science, 346, 617–619, doi:10.1126/science.1258582. JO ´ NSSON, S., Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Gala´pagos (2009), Tectonophysics, 471, 36–44, doi:10.1016/j.tecto.2008.08.005. KAVANAGH, J. L., BOUTELIER, D., and CRUDEN, A. R. (2015), The mechanics of sill inception, propagation and growth: Experimental evidence for rapid reduction in magmatic overpressure. Earth Planet. Sci. Lett., 421, 117–128. KAVANAGH, J. L., MENAND, T., and SPARKS, R.S.J. (2006), An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet. Sci. Lett., 245(3), 799–813, doi:10.1016/j.epsl.2015.03.038. KAVANAGH, J. L. and PAVIER, M.J. (2014), Rock interface strength influences fluid-filled fracture propagation pathways in the crust. Journal of Structural Geology 63, 68–75, doi:10.1016/j.jsg.2014. 03.001. LISTER, J. R. and KERR, R. C (1991), Sill intrusion as a source mechanism of unrest at volcanic calderas, J. Geophys. Res., 96 (B6), 10049–10077, doi:10.1029/91JB00600. MACEDONIO, G., GIUDICEPIETRO, F., D’AURIA, L. and MARTINI, M. (2014), Sill intrusion as a source mechanism of unrest at volcanic calderas, J. Geophys. Res. Solid Earth, doi:10.1002/ 2013JB010868. MANCONI, A. and CASU, F. (2012), Joint analysis of displacement time series retrieved from SAR phase and amplitude: Impact on the estimation of volcanic source parameters, Geoophys. Res. Lett., 39, L14301, doi:10.1029/2012GL052202. MARTI´, J., and FELPETO, A. (2010), Methodology for the computation of volcanic susceptibility. An example for mafic and felsic eruptions on Tenerife (Canary Islands). J. Volcanol. Geotherm. Res., 195, 69–77, doi:10.1016/j.jvolgeores.2010.06.008. MARTI´, J., SPENCE, R., CALOGERO, E., ORDON˜ EZ, A., FELPETO, A. and BAXTER, P. (2008), Estimating building exposure and impact to volcanic hazards in Icod de los Vinos, Tenerife (Canary Islands), J. Volcanol. Geotherm. Res., 178, 553–561, doi:10.1016/j. jvolgeores.2008.07.010. MARTIN, A. J., UMEDA, K., CONNOR, C.B., WELLER J.N., ZHAO, D. and TAKAHASHI, M. (2004), Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan, J. Geophys. Res., 109, B10,208, doi:10.1029/ 2004JB003201. MENAND, T. (2011), Physical controls and depth of emplacement of igneous bodies: a review. Tectonophysics, 500, 11–19, doi:10. 1016/j.tecto.2009.10.016 MICHAUT, C. (2011), Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon, J. Geophys. Res., 116, B05205, doi:10.1029/ 2010JB008108. NEWHALL, C.G., and DZURISIN, D. (1988), Historical unrest at large calderas of the world, 1108 pp., U.S. Geological Survey Bulletin 1855. OKADA, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, BSSA, 75(4), 1135–1154. ORSI, G., dE VITA, S. and DI VITO, M. (1996), The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration, J. Volcanol. Geotherm. Res., 74, 179–214, doi:10.1016/S0377-0273(96)00063-7. ORSI, G., DI VITO, M. A. and ISAIA, R. (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530, doi:10.1007/s00445-003-0336-4. PIOCHI, M., KILBURN, C.R.J., DI VITO, M.A., MORMONE, A., TRAMELLI, A., TROISE, C. and DE NATALE, G. (2014), The volcanic and geothermally active Campi Flegrei caldera: an integrated multidisciplinary image of its buried structure, Int. J. Earth Sci., 103(2), 401–421, doi:10.1007/s00531-013-0972-7. POLAND, M., Learning to recognize volcanic non-eruptions (2010), Geology, 38(3), 287–288, doi:10.1130/focus032010.1. RIVALTA, E., TAISNE, B., BUNGER, A., and KATZ, R. (2015), A review of mechanical models of dike propagation: schools of thought, results and future directions, Tectonophysics, 638, 1–42, doi:10. 1016/j.tecto.2014.10.003. RUBIN, A. M. (1995), Propagation of magma-filled cracks, Annu. Rev. Earth Planet. Sci., 23, 287–336. SELVA, J., ORSI, G., DI VITO, M., MARZOCCHI, W. and SANDRI, L. (2012), Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy, Bull. Volcanol., 74, 497–510, doi:10.1007/s00445-011-0528-2. SMITH, V.C., ISAIA, R., PEARCE, N.J.G. (2011), Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers, Quaternary Science Review., 30, 3638–3660, doi:10. 1016/j.quascirev.2011.07.012. SUN, R.J., (1969). Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium, J. Geophys. Res., 74, 5995–6011. THOREY, C., and C. MICHAUT (2014), A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters, J. Geophys. Res. Planets, 119, doi:10.1002/ 2013JE004467. TRASATTI, E., POLCARI, M., BONAFEDE, M. and STRAMONDO, S. (2015), Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geophysical Research Letters, 42, 10, 3847–3854, doi:10.1002/ 2015GL063621. VALENTINE, G.A., KROGH K.E.C. (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet. Sci. Lett., 246, pp. 217–230 doi:10.1016/j.epsl. 2006.04.031 WOO, J.Y.L. and KILBURN, C.R.J. (2010), Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension, Journal of Geophysical Research: Solid Earth (1978–2012) 115.B12, doi:10.1029/2009JB006913. YUN, S., SEGALL, P. and ZEBKER, H. (2006), Constraints on magma chamber geometry at Sierra Negra volcano, Galapagos Islands, based on InSAR observations. J. Volcanol. Geotherm. Res., 150, 232–243, doi:10.1016/j.jvolgeores.2005.07.009.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0033-4553en
dc.relation.eissn1420-9136en
dc.contributor.authorGiudicepietro, F.en
dc.contributor.authorMacedonio, G.en
dc.contributor.authorD'Auria, L.en
dc.contributor.authorMartini, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6198-8655-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.orcid0000-0002-7664-2216-
crisitem.author.orcid0000-0001-9934-9218-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
giumac2015.pdfarticle4.21 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s) 20

326
checked on Apr 13, 2024

Download(s)

57
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric