Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10258
DC FieldValueLanguage
dc.contributor.authorallBeauducel, F.; IPGPen
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2016-02-25T07:34:41Zen
dc.date.available2016-02-25T07:34:41Zen
dc.date.issued2015-06en
dc.identifier.urihttp://hdl.handle.net/2122/10258en
dc.description.abstractWe present a strategy to thoroughly investigate the effects of prominent topography on the surface tilt due to a spherical pressure source. We use Etna's topography as a case of study and, for different source positions, we compare the tilt fields calculated through (i) a 3-D boundary element method and (ii) analytical half-space solutions. We systematically determine (i) the source positions leading to the strongest tilt misfits when numerical and analytical results are compared and (ii) the surface areas where the strongest distortions in the tilt field are most likely to be observed. We also demonstrate that, under critical circumstances, in terms of respective positions of pressure source and observation points, results of inversion procedures aimed at retrieving the source parameters can be misleading, if tilt data are analysed using models that do not account for topography.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/201(2015)en
dc.subjectNumerical approximations and analysisen
dc.subjectTransient deformationen
dc.subjectVolcano monitoringen
dc.titleA strategy to explore the topography-driven distortions in the tilt field induced by a spherical pressure source. The case of Mt. Etna.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1471–1481en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.identifier.doi10.1093/gji/ggv076en
dc.relation.referencesAloisi, M., Bonaccorso, A. & Gambino, S., 2006. Imaging composite dike propagation (Etna, 2002 case), J. geophys. Res., 111(B6), B06404,doi:10.1029/2005JB003908. Aloisi, M., Mattia, M., Ferlito, C., Palano, M., Bruno, V. & Cannav`o, F., 2011. Imaging themulti-levelmagma reservoir atMt. Etna volcano (Italy), Geophys. Res. Lett., 38(16), doi:10.1029/2011GL048488. Anderson, E., 1936. The dynamics of the formation of cone sheets, ring dykes and caldron subsidences, Proc. Royal Soc. Edinburgh, 56, 128– 163. Anderson, K., Lisowski,M. & Segall, P., 2010. Cyclic ground tilt associated with the 2004–2008 eruption of mount St. Helens, J. geophys. Res., 115, doi:10.1029/2009JB007102. Battaglia, M., Gottsmann, J., Carbone, D.&Fern´andez, J., 2008. 4D volcano gravimetry, Geophysics, 73(6), WA3–WA18. Beauducel, F. & Cornet, F., 1999. Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java, J. geophys. Res., 104(B1), 725–736. Beauducel, F., Cornet, F., Suhanto, E., Duquesnoy, T. & Kasser, M., 2000. Constraints on magma flux from displacements data at Merapi volcano, Java, Indonesia, J. geophys. Res., 105(B4), doi:10.1029/2009JB007102. Beauducel, F., De Natale, G., Obrizzo, F. & Pingue, F., 2004. 3-D modelling of Campi Flegrei ground deformations: role of caldera boundary discontinuities, Pure appl. Geophys., 161(7), 1329–1344. Calvari, S., Tanner, L.H., Groppelli, G. & Norini, G., 2004. Valle del Bove, eastern flank of Etna volcano: a comprehensive model for the opening of the depression and implications for future hazards, Geophys. Monogr., 143, 65–75. Cayol, V. & Cornet, F., 1997. 3-D mixed boundary elements for elastostatic deformation field analysis, Int. J. Rock Mech. Min. Sci., 34(2), 275–287. Cayol, V. & Cornet, F., 1998. Effects of topography on the interpretation of the deformation field of prominent volcanoes: application to Etna, Geophys. Res. Lett., 25(11), 1979–1982. Cayol, V., Dieterich, J.H., Okamura, A.T. & Miklius, A., 2000. High magma storage rates before the 1983 eruption of Kilauea, Hawaii, Science, 288(5475), 2343–2346. Charco,M.&del Sastre, P.G., 2014. Efficient inversion of three-dimensional finite element models of volcano deformation, Geophys. J. Int., 196(3), 1441–1454. Chaussard, E. & Amelung, F., 2012. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR, Geophys. Res. Lett., 39(21), doi:10.1029/2012GL053817. Cianetti, S., Giunchi, C. & Casarotti, E., 2012. Volcanic deformation and flank instability due to magmatic sources and frictional rheology: the case of Mount Etna, Geophys. J. Int., 191(3), 939–953. Crouch, S., 1976. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. II. Semi-infinite body solution, Int. J. Num. Meth. Eng., 10(2), 301–343. Currenti, G., Del Negro, C. & Ganci, G., 2007. Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano, Geophys. J. Int., 169(2), 775–786. Dieterich, J., Cayol, V. & Okubo, P., 2000. The use of earthquake rate changes as a stress meter at kilauea volcano, Nature, 408(6811), 457– 460. Dvorak, J. & Dzurisin, D., 1997. Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents, Rev. Geophys., 35, 343– 384. Dzurisin, D., 2003. A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle, Rev. Geophys., 41(1), doi:10.1029/2001RG000107. Froger, J.-L., Merle, O. & Briole, P., 2001. Active spreading and regional extension at Mount Etna imaged by SAR interferometry, Earth planet. Sci. Lett., 187(3), 245–258. Fukushima, Y., Cayol, V. & Durand, P., 2005. Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise, J. geophys. Res., 110(B3), doi:10.1029/2004JB003268. Harrison, J., 1976. Cavity and topographic effects in tilt and strain measurement, J. geophys. Res., 81(2), 319–328. Ishii, H. & Takagi, A., 1967. Theoretical study on the Crustal Movememts Part. The influence of surface topography (two-dimensional SH-Torque source), The Science Reports of Tohoku University, Fifth Series, Geophysics 19(2), 77–94. Lisowski, M., 2006. Analytical volcano deformation source models, in Volcano Deformation, pp. 279–304, ed. Dzurisin, D., Springer-Verlag. Lyons, J.J., Waite, G.P., Ichihara, M. & Lees, J.M., 2012. Tilt prior to explosions and the effect of topography on ultra-long-period seismic records at Fuego volcano, Guatemala, Geophys. Res. Lett., 39(8), L08305, doi:10.1029/2012GL051184. Masterlark, T., Feigl, K.L., Haney, M., Stone, J., Thurber, C. & Ronchin, E., 2012. Nonlinear estimation of geometric parameters in FEMs of volcano deformation: integrating tomography models and geodetic data for Okmok volcano, Alaska, J. geophys. Res., 117(B2), doi:10.1029/2011JB008811. McTigue, D. & Segall, P., 1988. Displacements and tilts from dip-slip faults and magma chambers beneath irregular surface topography, Geophys. Res. Lett., 15(6), 601–604. Meertens, C.M. & Wahr, J.M., 1986. Topographic effect on tilt, strain, and displacement measurements, J. geophys. Res., 91(B14), 14 057–14 062. Meo, M., Tammaro, U. & Capuano, P., 2008. Influence of topography on ground deformation at Mt. Vesuvius (Italy) by finite element modelling, Int. J. Nonlinear Mech., 43(3), 178–186. Mogi, K., 1958. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull. Earthq. Res. Inst. Tokyo, 36, 99–134. Montgomery-Brown, E., Sinnett, D., Poland, M., Segall, P., Orr, T., Zebker, H. & Miklius, A., 2010. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the june 2007 intrusion and eruption at K¯ılauea volcano, Hawaii, J. geophys. Res., 115(B7), doi:10.1029/2009JB006658. Ohminato, T., Chouet, B.A., Dawson, P. & Kedar, S., 1998. Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii, J. geophys. Res., 103(B10), 23 839–23 862. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. seism. Soc. Am., 75(4), 1135–1154. Peltier, A., Bach`elery, P. & Staudacher, T., 2011. Early detection of large eruptions at Piton de La Fournaise volcano (La R´eunion Island): contribution of a distant tiltmeter station, J. Volc. Geotherm. Res., 199(1), 96–104. Privitera, E., Bonanno, A., Gresta, S., Nunnari, G. & Puglisi, G., 2012. Triggering mechanisms of static stress on Mount Etna volcano: an application of the boundary element method, J. Volc. Geotherm. Res., 245, 149–158. Rizzo, F., 1967. An integral equation approach to boundary value problems of classical elastostatics, Quart. Appl. Math., 25(1), 83–95. Segall, P., 2010. Earthquake and Volcano Deformation, Princeton Univ. Press. Trasatti, E., Giunchi, C. & Agostinetti, N.P., 2008. Numerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy), Geophys. J. Int., 172(2), 873–884. van Driel, M., Wassermann, J., Nader, M.F., Schuberth, B.S. & Igel, H., 2012. Strain rotation coupling and its implications on the measurement of rotational ground motions, J. Seismol., 16(4), 657–668. Voight, B., Hoblitt, R., Clarke, A., Lockhart, A., Miller, A., Lynch, L. & McMahon, J., 1998. Remarkable cyclic ground deformation monitored in real-time on Monserrat, and its use in eruption forecasting, Geophys. Res. Lett., 25, 3405–3408. Williams, C.&Wadge, G., 1998. The effects of topography on magma chamber deformationmodels: application toMt. Etna and radar interferometry, Geophys. Res. Lett., 25(10), 1549–1552. Williams, C.A. & Wadge, G., 2000. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry, J. geophys. Res., 105(B4), 8103–8120.en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorBeauducel, F.en
dc.contributor.authorCarbone, D.en
dc.contributor.departmentIPGPen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitut de Physique du Globe de Paris-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Beauducel_CarboneGeophys_2015_GJI.pdfMain article12.35 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s) 50

339
checked on Apr 20, 2024

Download(s)

53
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric