Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10235
Authors: Cappello, A.* 
Herault, A.* 
Bilotta, G.* 
Ganci, G.* 
Del Negro, C.* 
Title: MAGFLOW: a physics-based model for the dynamics of lava-flow emplacement
Issue Date: 30-Jul-2015
Keywords: lava flow hazard
Subject Classification05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions 
Abstract: The MAGFLOW model for lava-flow simulations is based on the cellular automaton (CA) approach, and uses a physical model for the thermal and rheological evolution of the flowing lava. We discuss the potential of MAGFLOW to improve our understanding of the dynamics of lava-flow emplacement and our ability to assess lava-flow hazards. Sensitivity analysis of the input parameters controlling the evolution function of the automaton demonstrates that water content and solidus temperatures are the parameters to which MAGFLOW is most sensitive. Additional tests also indicate that temporal changes in effusion rate strongly influence the accuracy of the predictive modelling of lava-flow paths. The parallel implementation of MAGFLOW on graphic processing units (GPUs) can achieve speed-ups of two orders of magnitude relative to the corresponding serial implementation, providing a lava-flow simulation spanning several days of eruption in just a few minutes. We describe and demonstrate the operation of MAGFLOW using two case studies from Mt Etna: one is a reconstruction of the detailed chronology of the lava-flow emplacement during the 2006 flank eruption; and the other is the production of the lava-flow hazard map of the persistent eruptive activity at the summit craters.
Appears in Collections:Book chapters

Files in This Item:
File Description SizeFormat Existing users please Login
2015 Geological Society, London, Special Publications-2015-Cappello-SP426.16.pdf4.14 MBAdobe PDF
Show full item record

Page view(s)

164
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric