Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10208
DC FieldValueLanguage
dc.contributor.authorallFalsaperla, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2016-02-22T07:16:31Zen
dc.date.available2016-02-22T07:16:31Zen
dc.date.issued2015-07-15en
dc.identifier.urihttp://hdl.handle.net/2122/10208en
dc.description.abstractOne of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 E+04 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage).en
dc.description.sponsorshipThis work was supported by the MED-SUV project, which has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308665.en
dc.language.isoEnglishen
dc.publisher.nameNature Publishing Groupen
dc.relation.ispartofscientific reportsen
dc.relation.ispartofseries/5(2015)en
dc.subjectdyke propagationen
dc.subjectEtnaen
dc.subjectseismic signalsen
dc.subjectground fracturingen
dc.subjectconceptual modellingen
dc.titleSeismic footprints of shallow dyke propagation at Etna, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber11908en
dc.identifier.URLhttp://www.nature.com/srep/2015/150715/srep11908/full/srep11908.htmlen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1038/srep11908en
dc.relation.references1. Bonaccorso, A., Campisi, O., Falzone, G. & Gambino, S. Continuous tilt monitoring: a lesson from 20 years experience at Mt. Etna in Mt. Etna: Volcano Laboratory, Geophys. Monogr. Ser., Vol. 143 (eds Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S.) 307–320 (American Geophysical Union, 2004). 2. Cappello, A. et al. Spatial vent opening probability map of Mt Etna volcano (Sicily, Italy). Bull. Volcanol. 74, 2083–2094 (2012). 3. Bousquet, J. C. & Lanzafame, G. Nouvelle interprétation des fractures des éruptions latérales de l’Etna: conséquences pour son cadre tectonique. Bull. Soc. Géol. Fr. 172, 455-467 (2001). 4. Acocella, V., Neri, M. & Sulpizio, R. Dike propagation within active central volcanic edifices: constraints from Somma-Vesuvius, Etna and analogue models. Bull. Volcanol. 71, 219–223 (2009). 5. Neri, M. et al. Structural analysis of the eruptive fissures at Mount Etna (Italy). Ann. Geophys. 54, 464-479 (2011). 6. Billi, A. et al. Mechanisms for ground-surface fracturing and incipient slope failure associated to the July-August 2001 eruption of Mt. Etna, Italy: analysis of ephemeral field data. J. Volcanol. Geotherm. Res. 122, 281-294 (2003). 7. Neri, M. & Acocella, V. The 2004-05 Etna eruption: implications for flank deformation and structural behaviour of the volcano. J. Volcanol. Geotherm. Res. 158, 195-206 (2006). 8. Geshi, N. & Neri, M. Dynamic feeder dyke systems in basaltic volcanoes: the exceptional example of the 1809 Etna eruption (Italy). Front. Earth Sci. 2:13, DOI:10.3389/feart.2014.00013 (2014). 9. Gudmundsson, A. Infrastructure and mechanics of volcanic systems in Iceland. J. Volcanol. Geoth. Res. 64, 1-22 (1995). 10. Lundgren, P. et al. Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kılauea Volcano, Hawai`i. J. Geophys. Res. 118, 897–914 (2013). 11. Acocella, V., Neri, M. & Scarlato, P. Understanding shallow magma emplacement at volcanoes: orthogonal feeder dikes during the 2002–2003 Stromboli (Italy) eruption. Geophys. Res. Lett. 33, L17310 (2006). 12. Neri, M. & Lanzafame, G. Structural features of the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 182, 137-144 (2009). 13. Gudmundsson, A. Surface stresses associated with arrested dykes in rift zones. Bull. Volcanol. 65, 606-619 (2003). 14. Del Negro, C. et al. Lava flow hazards at Etna volcano: constraints imposed by eruptive history and numerical simulations. Sci. Rep. 3:3493, DOI:10.1038/srep03493 (2013). 15. Behncke, B. et al. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 270, 10-21 (2014). 16. Vicari, A. et al. Near-real-time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption. Geophys. Res. Lett. 38, L13317 (2011). 17. Falsaperla, S. et al. Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: The missing link? J. Geophys. Res. 115, B11306 (2010). 18. Di Grazia, G., Falsaperla, S. & Langer, H. Volcanic tremor location during the 2004 Mount Etna lava effusion. Geophys. Res. Lett. 33, L04304 (2006). 19. D’Agostino, M. et al. Volcano monitoring and early warning on Mt Etna based on volcanic tremor—Methods and technical aspects in Complex Monitoring of Volcanic Activity: Methods and Results, (ed Zobin, V. M.) Ch 4 (Nova Science, 2013). 20. Alparone, S. et al. Intrusive mechanism of the 2008-2009 Mt. Etna eruption: Constraints by tomographic images and stress tensor analysis. J. Volcanol. Geotherm. Res. 229-230, 50-63 (2012). 21. Carlson, R. L. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases. Geochem. Geophys. Geosyst. 15, 4589-4598 (2014). 22. Miller, V., Voight, B., Ammon, C. J., Shalev, E. & Thompson, G. Seismic expression of magma‐induced crustal strains and localized fluid pressures during initial eruptive stages, Soufrière Hills Volcano, Montserrat. Geophys. Res. Lett. 37, L00E21 (2010). 23. De Gori, P., Chiarabba, C. & Patané, D. QP structure of Mount Etna: constraints for the physics of the plumbing system. J. Geophys. Res. 110, B05303 (2005). 24. Giampiccolo, E., D’Amico, S., Patane`, D. & Gresta, S. Attenuation and source parameters of shallow microearthquakes at Mt. Etna Volcano, Italy. Bull. Seism. Soc. Am. 97, 1B, 184–197 (2007). 25. Ferrari, L., Garduno, V. H. & Neri, M. I dicchi della Valle del Bove, Etna: un metodo per stimare le dilatazioni di un apparato vulcanico. Mem. Soc. Geol. It. 47, 495–508 (1991). 26. Hjartardóttir, A. R., Einarsson, P., Bramham, E. & Wright, T. J. The Krafla fissure swarm, Iceland, and its formation by rifting events. Bull. Volcanol. 74, 2139–2153 (2012). 27. Gudmundsson, A., Lecoeur, N., Mohajeri, N. & Thordarson, T. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull Volcanol. 76:869, DOI:10.1007/s00445-014-0869-8 (2014).en
dc.description.obiettivoSpecifico2V. Dinamiche di unrest e scenari pre-eruttivien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorFalsaperla, S.en
dc.contributor.authorNeri, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-1071-3958-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2015_Falsaperla&Neri_srep11908.pdfMain article2.76 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s) 50

369
checked on Apr 24, 2024

Download(s)

42
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric