Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10121
DC FieldValueLanguage
dc.contributor.authorallSpagnuolo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2015-08-17T07:19:25Zen
dc.date.available2015-08-17T07:19:25Zen
dc.date.issued2010-04en
dc.identifier.urihttp://hdl.handle.net/2122/10121en
dc.description.abstractIn planning the design of structures in a region of potential seismic activity, a specification of the “strength” of the earthquake ground motion, or the most likelihood ground motion level, is needed. The earthquake occurrence, and its effects, is described as a stochastic process. Thus its realization is linked to state variables defined over a a known space through a continuous function. The Ground Motion Predictive Equation (GMPE) realize this function and, despite its shortcoming as an effective design tool to control damage (Priestly, 2003), it is still the most widely used representation of earthquake ground motion employed in engineering practice. As a consequence the majority of hazard estimations are based on the GMPE providing a ground motion specification as a function of a certain number of variables. In fact in many situation there are not enough data to allow a direct empirical specification of ground motion. Only few regions, i.e. Japan, have strong-motion network and data-banks sufficient to carry out seismic hazard assessment without the benefit of regionally-derived ground motion predictive model. The central role they hold in the hazard assessment motivates the recent efforts in better synthesize all available regional informations and general knowledge about earthquakes. The representation of the ground motion through the GMPE is simple compared to the complexity of the physical process involved. If only the magnitude and distance are taken into account, the GMPEs predict isoseismal curves that are expected to be isotropic around the hypocenter and uniform if no other effects are considered (i.e. site effects). Instead, the presence of a fault plane, across which a process of failure in shear develops, make this general formulation divert from the observations on a specific case. In fact the dynamic propagation of rupture results in anisotropy effects not included in the predictions although back-analyses of ground motions from past earthquakes have shown that such effects have a strong influence on the spatial distribution of ground motion.Although the anisotropy effects resulting from the propagation of rupture have been generally recognized and finally incorporated in predictions, its effect has not been tested yet in an hazard context. On the contrary, all the aforementioned issues motivate an in depth analysis of its contribution on the present tools of seismic hazard assessment. This work is mainly addressed to conduct such analysis. One guidance is provided answering to the following questions: Does directivity improves the performance of ground motion prediction in real time applications? Is directivity still effective in a PSHA framework? What deterministic hazard model can tell about directivity ?en
dc.description.sponsorshipUniversità degli studi di Genova, Istituto Nazionale di Geofisica e Vulcanologiaen
dc.language.isoEnglishen
dc.subjectseismic hazarden
dc.subjectseismic scenariosen
dc.subjectdirectivityen
dc.titleFault Directivity and Seismic Hazarden
dc.typethesisen
dc.description.statusUnpublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.relation.referencesAbrahamson, N. A. & R. R. Youngs, R. R. (1992), 'A stable algorithm for regression analyses using the random effects model', Bulletin of the Seismological Society of America 82, 505-510. Abrahamson, N. A. & Somerville, P. G. (1996), 'Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake', Bulletin of the Seismological Society of America 86, S93-S99. Abrahamson, N.A. (2000). Proc. of 6th Int. Conf. on Seismic Zonation, Palm Springs, Earthq. Eng. Res. Inst. Abrahamson, N. & Silva, W. (2008), 'Summary of the Abrahamson & Silva NGAGround-Motion Relations', Earthquake Spectra 24(1), 67-97. Aki, K. (1968), 'Seismic Displacements Near a Fault', J. Geophys. Res. 73, 5359?5376. Aki, K. (1967), 'Scaling law of seismic spectra', J. Geophys. Res. 72, 1217-1231.. Aki, K., Richards, P.G., 1980. Quantitative Seismology, Freeman and Co., New York Aki K. and P.G. Richards, (2002). Quantitative Seismology: Theory and Methods, second edition.University Science Books. Akkar, S. & Bommer, J. J. (2007), 'Empirical Prediction Equations for Peak Ground VelocityDerived from Strong-Motion Records from Europe and the Middle East', Bulletin of the Seismological Society of America 97(2), 511-530. Amato, A., and Selvaggi G. (1993). Aftershock location and P-velocity structure in the epicentral region of the 1980 Irpinia earthquake. Annali di Geofisica, 36, 315. Ambraseys, N.; Simpson, K. & Bommer, J. (1996), 'PREDICTION OF HORIZONTAL RESPONSE SPECTRA IN EUROPE', Earthquake engineering and Structural Dynamics 25, 371-400. Ameri, G., Akinci A., Cocco M., Cultrera G., Franceschina G., Pacor F., Pessina, V., Lombardi A.M., (2007). Ground motion scenario for selected cities (pp 4158). In: Technical dissemination N. 8 SP11 - Prediction of ground motion and loss scenarios for selected infrastructure systems in European Urban Environment/ (Eds: Faccioli E.) IUSS Press, ISBN 978-88-6198-012-9, pp. 210. Ameri, G., Pacor, F., Cultrera, G. and G. Franceschina (2008). Deterministic Ground-Motion Scenarios for Engineering Applications: The Case of Thessaloniki, Greece. Bull. Seism. Soc. Am., 98, 3, 1289–1303. Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, No. 32, 5679-5687 Andrews, D.J., T. C. Hanks, and J.W. Whitney (2007). Physical limits on ground motion at Yucca Mountain, Bull. Seism. Soc. Am., 97, 1771-1792. Baker, G. (2008), 'Improving our understanding of near-surface seismic reflection data quality.', Invited contribution to The Leading Edge Special Issue 27, 15261534. Baker, J. W. & Cornell, A. C. (2005): 'A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon', Earthquake Engng Struct. Dyn. 2005; 34:1193–1217, Published online 21 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/eqe.474 Baker, J. W. & Cornell, A. C. (2006); 'Vector-Valued Ground Motion Intensity Measures forProbabilistic Seismic Demand Analysis', Stanford University. Bakun, W. H.; Stewart, R. M. & Bufe, C. G. (1978): 'DIRECTIVITY IN THE HIGH-FREQUENCY RADIATION OF SMALL EARTHQUAKES', Bulletin of the Seismological Society of America 68, 1253. Bazurro, P. & A., Cornell, A. (1999): 'Disaggregation of Seiemic Hazard', Bulletin of Seismological Society of America 89(2), 501-520. Ben-Menahem, A. (1961): 'Radiation of seismic surface-waves from finite moving sources', PhD thesis, California Institute of Technology. Ben-Menahem A. (1962): 'Radiation of seismic body waves from a f inite moving source in the earth',. J. Geophys. Res., 67, 345-350 Benioff, H. (1955), 'Earthquakes in Kern County California during 1952', Department of natural resources - Division of Mines 171, 199-204. Berge C., Herrero A., Bernard P., Bour M. & Dominique P., (1998), 'The spectral Source model: A Tool for deterministic and Probabilistic Sesimic Hazard Assesment', Earthquake Spectra 14(1), 35-57. Bernard P., Herrero A., & Berge C. (1996). 'Modeling Directivity of Heterogeneous EarthquakeRuptures', Bulletin of the Seismological Society of America 86(4), 1149-1160. Bernard, P. & Herrero, A. (1994), 'Slip heterogeneity, body-wave spectra, and directivity of earthquake ruptures', Annals of Geophysics 37, 1679-1690. Bernard, P.; Herrero, A. & Berge, C. (1996), 'Modeling Directivity of Heterogeneous EarthquakeRuptures', Bulletin of the Seismological Society of America, Vol. 86, No. 4, pp. 1149-1160, August 1996 86, No 4, 1149-1160. Beroza, G. C., & P. Spudich (1988). Linearized Inversion for Fault Rupture Behavior - Application to the 1984 Morgan-Hill, California, Earthquake. J. Geophys. Res., 93 (B6):6275-6296. Bizzarri, A. & Spudich, P. (2008). Effects of supershear rupture speed on the high– frequency content of S waves investigated using spontaneous dynamic rupture models and isochrone theory. J. Geophys. Res., 113, B05304, doi:10.1029/2007JB005146 Bizzarri, A., Cocco M., Andrews D. J. & Boschi E., (2001). Solving the dynamic rupture problem with different numerical approaches and constitutive laws. Geophys. J. Int. 144, 656-678. Birgören, G., Sekiguchi H., and K. Irikura, (2004). Rupture model of the 1999 Duzce, Turkey, earthquake deduced from high and low frequency strong motion data. Geoph. Res. Lett., 31, L05610, doi:10.1029/2003GL019194. Boatwright, J. (2007), 'The Persistence of Directivity in Small Earthquakes', Bulletin of the Seismological Society of America 97, No 6, 1850-1891. Boatwright, J. & Boore, D. M. (1982), 'Analysis of the ground accelerations radiated by the 1980 Livermore Valley earthquakes for directivity and dynamic source characteristic', Bulletinofthe Seismological Society of America 72a, 18431865. Bommer J. J. (2003) 'Uncertainty about the uncertainty in seismic hazard analysis', Engineering Geology, Volume 70, Issues 1-2, October 2003, Pages 165-168 Bommer et al. (2000), Proceedings of the 12th World Conference on Earthquake Engineering, paper no. 207 Bommer JJ, Alarcón JE (2006). The prediction and use of peak ground velocity. J Earthq Eng 10(1):1–31. doi:10.1142/S1363246906002463 Bommer. J. & Abrhamson., A. N. (2006), 'Why Do Modern Probabilistic SeismicHazard Analyses Often Leadto Increased Hazard Estimates?', Bulletin of the Seismological Society of America, , pp. , doi: 96(6), 1967?1977. Bommer, JJ, Stafford, PJ, Akkar, S. (2009). Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8, Bulletin of Earthquake Engineering. Published online: 28 May 2009. DOI: 10.1007/s10518 009-9122-9 Bommer. J. & Abrhamson., A. N. (2006), 'Why Do Modern Probabilistic SeismicHazard Analyses Often Leadto Increased Hazard Estimates?', Bulletin of the Seismological Society of America, , pp. , doi: 96(6), 1967?1977. Boore, D. & Joyner, W. (1978), 'The influence of rupture incoherence on seismic directivity', Bulletin of the Seismological Society of America; 68(2), 283-300. Boore, D. M. and W. B. Joyner (1982). The empirical prediction of ground motion, Bull. Seism. Soc. Am. 72, S43-S60 Boore, D.; Joyner, W. & T.E.Fumal (1997), 'Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Wester Noth American Earthquake: A Summary of Recent Work', Seismological Research Letters 68(1), 128-153. Boore, D. M.; Watson-Lamprey, J. & Abrahamson, N. A. (2006), 'OrientationIndependent Measures of Ground Motion', Bulletin of the Seismological Society of America 96, 4A, 1502-1511. Boore, D. M. & Atkinson G. M. (2007), 'NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters', Technical report, PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER. Bordchert, R. D. (1994), 'Estimates of Site-Dependent Response Spsectra for Design (Methodology and Justification)', Earthquake Spectra 10, 617. Bouchon M., M. N. Toksöz, H. Karabulut, M.-P. Bouin, M. Dietrich, M. Aktar and M. Edie, (2002). Space and Time Evolution of Rupture and Faulting during the 1999 Izmit (Turkey) Earthquake. Bull. Seism. Soc. Am., 92; 1; 256-266; DOI: 10.1785/0120000845. Bouchon, M. Bouin, M.-P. Karabulut, H. Toksoz, M. N. Dietrich, M.; Rosakis, A. J., (2001). How Fast is Rupture during an Earthquake? New Insights from the 1999 Turkey Earthquakes, Geoph. Res. Lett., 28, 14, 2723-2726. Bray, J. & Rodriguez-Marek, A. (2004), 'Cahracterization of forward-directivity ground motions in the near fault region', Soil Dynamics and Eartquake Engineering Geology 24, 815-828. Brune, J. N. (1971), 'Correction. Tectonic stress and spectra of seismic shear waves from earthquakes', J. Geophys. Res 76, 5002. Brune, J. N. (1970), 'Tectonic Stress and the spectra of seismic Shear Waves from earthquakes', Journal of Geophysical Research 75, 4997-5009. Bullen K. E. & Bolt B.A., (1985), 'An Introduction to the theory of seismology', fourth edition, Cambridge University Press. Campbell, K.W. (1985). Strong motion attenuation relations: a ten-year perspective, Earthquake Spectra, 1(4), 759–804. Campbell, K. W. 1987. “Predicting Strong Ground Motion in Utah: Assessment of Regional Earthquake Hazards and Risk along the Wasatch Front, Utah,” OpenFile Report 87-585, Vol 2, U.S. Geological Survey, Reston, VA, pp L1-L90. Campbell, K. & Bozorgnia, Y. (2003), 'Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra', Bulletin of the Seismological Society of America 93(1), 314-331. Causse M., F. Cotton, C. Cornou, and P.-Y. Bard, (2008). Calibrating Median and Uncertainty Estimates for a Practical Use of Empirical Green’s Functions Technique. Bull. Seism. Soc. Am., 98, 1, 344–353, doi: 10.1785/0120070075 CEN (2004). Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. Bruxelles , 6291-6302. Chen, X. (1995), ' Near-fault ground motion for the Landers earthquake', (Chapter 2: Nature of the near-field ground motion), EERL 95-02 Earthquake Engineering Research Laboratory, Caligfornia Institute of Technology, Pasadena, CA: 169 pp. Chiou, B. S.-J. & Youngs, R. (2008), 'An NGA Model for the Average HorizontalComponent of Peak Ground Motionand Response Spectra', Earthquake Spectra 24(1), 173-215. Chopra, A. K. & C. Chintanapakdee, C. (2001), 'Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions', Earthquake Eng. Struct. Dyn. 30, 1769 -1789. Cirella, A., A. Piatanesi, E. Tinti and M. Cocco (2006). Dynamically consistent source time functions to invert kinematic rupture histories. Eos, Trans. AGU 87(52), Fall Meet. Suppl., Abstract S41B-1323. Cirella, A., A. Piatanesi, E. Tinti, and M. Cocco, (2008). Rupture process of the 2007 Niigata-ken Chuetsu-oki earthquake by non-linear joint inversion of strong motion and GPS data. Geophys. Res. Lett., 35, L16306, doi:10.1029/2008GL034756. Cocco, M. and F. Pacor (1993): The rupture process of the 1980, Irpinia, Italy earthquke from the inversion of strong motion waveforms, Tectonophysics, 218, 157-177 Cohee, B. P., and G. C. Beroza, (1994). Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics. Bull. Seismol. Soc. Am., 84, 693–712. Convertito, V. and A. Herrero (2004). Influence of focal mechanism in probabilistic seismic hazard analysis, Bull. Seism. Soc. Am. 94, no. 6, 2124-2136 Convertito, V. , Emolo, A. & Zollo, A. (2006), 'Seismic-Hazard Assessment for a Characteristic Earthquake Scenario: An Integrated Probabilistic–Deterministic Method', Bulletin of the Seismological Society of America 96(2), 377?391. Cook, R. D. (1982). Residuals and Influence in Regression, Chapman and Hall, New York. Cornell. A. C. (1968), 'ENGINEERING SEISMIC RISK ANALYSIS', Bull. Seismol. Soc. Am. 58(5), 1583-1606. Cox,C. & Ashford, S. A. (2001), 'Characterization of Large Velocity Pulses for Laboratory Testing'(Structural Systems Research Report No. SSRP-2001/11), Technical report, Department of Structural Engineering, UCSD. Custódio, S., and R. J. Archuleta (2007). Parkfield earthquakes: Characteristic or complementarity?. J. Geophys. Res., 112, B05310, doi: 10.1029/2006JB004617. Cultrera, G.; Pacor, F.; Franceschina, G.; Emolo, A. & Cocco, M. (2009), 'Directivity effects for moderate- magnitude earthquakes (Mw 5.6-6.0) during the 1997 Umbria-Marche sequence, Central Italy', Tectonophysics, 1-2/476(2009) Das S., & Aki K., (1977), 'A Numerical study of two-dimensional spontaneous rupture rpopagation', Geophysical Journal International 50(3), 643-668. Day S. (1982). Three-dimensional finite-difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bull. Seismol. Soc. Am., 72, 705727. Delouis, B, Giardini D., Lundgren P. and Salichon J. (2002). Joint inversion of Insar, GPS, teleseismic and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 Izmit mainshock. Bull. Seismol. Soc. Am., 92(1), 278-299. Douglas A., J. A. Hudson J. A., & R. G. Pearce (1988)., 'Directivity and the Doppler effect', Bull. Seismol. Soc. Am. 78, 1367-1372 Douglas, J., and P. M. Smit (2001). How accurate can strong ground motion attenuation relations be? Bulletin of the Seismological Society of America 91 (6), 1,917–1,923. Douglas, J. (2003). Earthquake ground motion estimation using strong motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates, Earth-Science Reviews, 61, p. 43-104 Douglas, J. (2006). Errata of and Additions to “Ground Motion Estimation Equations 1964–2003.” Report BRGM/RP-54603-FR, Bureau des Recherches Géologiques et Minières, France, 103 pps. http:// www.brgm.fr/publication/pubDetailRapportSP.jsp?id=RSP-BRGM/ RP54603-FR Filson J. & McEvilly TV (1967): ' Love wave spectra and the mechanism of the 1966 Parkfield sequence ', Bull. Seismol. Soc. Amer. 57, 1245-59 Frankel, A. (1991). High-frequency spectral falloff for earthquakes fractal dimension of complex rupture,b -value, and the scaling of strength on faults Jour. Geophys. Res. 96 Frankel, A.; Stephenson, W.; Carver, D.; Williams, R.; Odum, J. & Rhea, S. (2007), 'Seismic Hazard Maps for Seattle, Washington,Incorporating 3D Sedimentary Basin Effects, NonlinearSite Response, and Rupture Directivity', Open-File Report 2007–1175U.S. Department of the InteriorU.S. Geological Surveyhttp://pubs.usgs.gov/of/index_old.html , Technical report, USGS-Open file report. Guatteri M., Mai P.M., and Beroza G.C., (2004). A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction. Bull. Seis. Soc. Am., 94,6,2051-2063 Gutenberg B. and Richter C.F. (1954). Seismicity of the Earth and Associated Phenomena, 2nd ed., Princeton, N.J.: Princeton University Press, pages 17-19. Hall, J. T.; J., T. H.; Halling, M. & Wald, D. (1995), 'Near-source ground motions and its effects on flexible buildings,', Earthquake Spectra 11, 569-605. Hanks, T. (1974), 'The faulting mechanism of the San Fernando earthquake', Journal of Geophysical Research 79, 1215-1229. Hanks, T. (1975), 'Strong ground motion of the San Fernando, California, earthquake: Ground displacements', Bull. Seism. Soc. Am .65 193-225 Haskell, N. A. (1964), 'Total energy and energy spectral density of elastic wave radiated from propagating faults', Bulletin of the Seismological Society of America 54, No 6, 1811-1841. Haskel, N. A. (1966), 'Total energy and energy spectral density of elastic wave radiation from propagating faults: part II. A statistical source model', Bull. Seism. Soc. Am. 56, 125-140. Harris R.A. and J. R. Arrowsmith, (2006). Introduction to the Special Issue on the 2004 Parkfield Earthquake and the Parkfield Earthquake Prediction Experiment. Bull. Seism. Soc. Am, 96, 4B,1-10, doi: 10.1785/0120050831 Heaton, T. H. (1990). Evidence for and implication of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Int., 64, 1-20. Hirasawa, T. & Stauder, W. (1995), 'On the seismoic body waves from a finite moving source', Bulletin of the Seismological Society of America 55, No 2, 237262. Housner, G.W., (1955). Properties of strong-motion earthquakes, Bull. seism.Soc. Am., 45, 197–218. Howard, J. K.; Tracy, C. A. & Burns, R. G. (2005), 'Comparing Observed and Predicted Directivity in Near-Source Ground Motion', Earthquake Spectra 21, 1063-1092. Iervolino, I. & Cornell, C. A. (2008), 'Probability of Occurrence of Velocity Pulses in Near-Source Ground Motions', Bulletin of the Seismological Society of America, 98(5), 2262-2277. Improta L., M. Bonagura, P. Capuano and G. Iannaccone (2003). An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, Ms=6.9, Irpinia earthquake (Southern Italy). Tectonophysics, 361,1-2, pp.139169. ITACA Working Group (2008) - Data Base of the Italian strong motion data: http://itaca.mi.ingv.it Iwata, T., H. Sekiguchi, Y. Matsumoto, H. Miyake, and K. Irikura (2000). Source process of the 2000 western Tottori Prefecture earthquake and near-source strong ground motion, paper presented at 2000 Fall Meeting Seismol. Soc. of Jpn., Tsukuba. Joyner, W.B. and D.M. Boore (1988). Measurement, characterization, and prediction of strong ground motion, in Earthquake Engineering and Soil Dynamics II, Proc. Am. Soc. Civil Eng. Geotech. Eng. Div. Specialty Conf., June 27--30, 1988, Park City, Utah, 43--102. (4.7 Mb) Joyner, W. B. (1991), 'Short Notes: Directivity For Non Uniform Ruptures', Bulletin of the Seismological Society of America 81, 1391-1395. Kanno, T.; Narita, A.; Morikawa, N.; Fujiwara, H. & Fukushima, Y. (2006), 'A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data', Bulletin of the Seismological Society of America, Vol. 96, No. 3, pp. , June 2006, doi: 10.1785/0120050138 96, 879?897. Kasahara, K. (1960), 'An Attempt to Detect Azimuth Effect on Spectral Structures of Seismic Waves (The Alaskan Earthquakes of April 7, 1958)', Bull. Earthquake Res. Inst., 38, 207-218.. Klügel, J.-U. (2007), 'Comment on “Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates?” by Julian J. Bommer and Norman A. Abrahamson', Bulletin of the Seismological Society of America, Vol. 97, No. 6, pp. 2198–2207, December 2007, doi: 10.1785/0120070018 97, 21982207. Klügel, J.-U. (2007), 'Error inflation in Probabilistic Seismic Hazard Analysis', Engineering Geology 90, 186-192. Liu, P., and R. Archuleta (2004). A new nonlinear finite fault inversion with threedimensional Green’s functions: application to the 1989 Loma Prieta, California, earthquake. J.Geophys. Res., 109, B02318, doi:10.1029/2003JB002625. Ma, K. F., Song, T. R., Lee, S. J. and Wu, H. I. (2000). Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan earthquake Mw = 7.6 - inverted from teleseismic data. Geophys. Res. Lett., 27, 3417-3420. Mai M.P., Spudich P. &Boatwright J (2005). 'Hypocenter Locations in FiniteSource Rupture Models', Bull. Seismol. Soc. Am. 95 965-9 Manighetti, I.; Campillo, M.; Sammis, C.; Mai, M. & King, G. (2005), 'Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics', Journal of Geophysical Research 110, B05302. Malagnini, L., R.B. Herrmann and M. Di Bona; (2000). Ground-Motion Scaling in the Apennines (Italy). Bull. Seism. Soc. Am., 90, 1062-1081. Michelini A, Faenza L., Lauciani V., and Malagnini L., (2008). Shakemap Implementation in Italy, Seismological Research Letters; September/October 2008; v. 79; no. 5; p. 688-697; DOI: 10.1785/gssrl.79.5.688 McGuire, R.K(1975), 'Fortran Computer Program for seismic risk analysis', OpenFile Report 1976–67 U.S. Department of the InteriorU.S. Geological Survey, Technical report, USGS-Open file report. McGuire. R.K., (1995), 'Probabilistic Seismic Hazard Analysis and Design Earthquakes: closing the Loop', Bulletin of Seismological Society of AMerica 85(5), 1275-1284. McGuire. R.K., (1976), 'Fortran Computer Program for Seismic Risk Analysis', United States Department of the interior Geological Survey, Open File Report. McGuire, R. K. (2004), 'Estimating Finite Source Properties of Small Earthquake Ruptures', Bulletin of the Seismological Society of America 94, 377-393. McGuire, R. K. & Arabasaz W.J., (1990). an introduction to probabilistic seismic hazard analysis, in SH Ward, ed. Geotechnical and Environmental Geophysics, Society of Exploration Geophysicists, Vol 1, pp. 333-353. Newmark. M. N, & Hall, W. J. (182), 'arthquake Spectra and Design'(EEERI Monograph 3), Technical report, Earthquake Engineering Research Institute, Oakland, CA.. Nielsen S. and R. Madariaga, (2003). On the Self-Healing Fracture Mode. Bull Seismol Soc Am, 93:2375–2388. Oglesby, D. D., R. J. Archuleta, and S. B. Nielsen (2000). The dynamics of dip-slip faulting: explorations in two dimensions, J. Geophys. Res., 105, B6, 1364313653. Ohnaka M. and L. Shen (1999). Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res., 104, B1, 817–844, 1999. Okada T., Umino N., Hasegawa A. (2009) Deep structure of the Ou mountain range strain concentration zone and the focal area of the 2008 Iwate-Miyagi Nairiku earthquake, NE Japan – Seismogenesis related with magma and crustal fluid, Earth, Planets and Space, accepted. Olivares L. and F. Silvestri (2001). Analisi della risposta sismica e della subsidenza post-sismica del colle di Bisaccia a seguito del terremoto irpino-lucano del 1980. Proc. X National Conference of Italian National Association of Earthquake Engineering, Potenza-Matera, Italy, 9- 13 sept. 2001. Olson A.H., Orcutt. J.A. & Frasier. G.A., (1984), 'The discrete wavenumber/finite element method for synthetic seismograms', Geophysical journal of the Royal Astronomical Society 77(2), 421-460. Ordaz M. Aguillar A., Arboleda J. (2001) CRISIS 99-18 v.1.018 Program for computing seismic risk, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico. Panza G.F., Romanelli F., Vaccari F., Decanini L., Mollaiolis F. (2003). Seismic ground motion modelling and damage earthquake scenarios: A bridge between seismologist and seismic engineers. OECD/NEA Workshop on Relation between Seismological Data and Seismic Engineering. 16-18 October 2002. (vol. 1, pp. 241-266). Piatanesi, A.; Cirella, A.; Spudich, P. & Cocco, M. (2007), 'A global search inversion for earthquake kinematic rupture history: application to the2000 western Tottori, Japan earthquake', JOURNAL OF GEOPHYSICAL RESEARCH 112, B07314. Piatanesi, A.; Tinti, E.; Cocco, M. & Fukuyama, E. (2004), 'The dependence of traction evolution on the earthquake source time function adopted in kinematic rupture models', Geophysical Research Letters 31, L04609. Power M., Chiou B., Abrahamson N., Bozorgnia Y., Shantz T., & Roblee C. (2008): ' An Overview of the NGA project', Earthquake Spectra, 24, pp. 3-21 Priestley M. J. N. (2003). Myths and Fallacies in Earthquake Engineering, Revisited, The Mallet Milne Lecture, IUSS Press, Pavia, Italy. Pulido, N. & Dalguer, L. A. (2009), 'Estimation of the High-Frequency Radiation of the 2000 Tottori (Japan) Earthquake Based on a Dynamic Model of Fault Rupture: Application to the Strong Ground Motion Simulation', Bulletin of the Seismological Society of America 99, 2305-2322. Reiter, L. (1990). Rarthquake Hazard Analysis: Issues and Insight. New York Columbia University Press. Ripperger J., P. M. Mai, and J.-P. Ampuero, (2008). Variability of Near-Field Ground Motion from Dynamic Earthquake Rupture Simulations. Bulletin of the Seismological Society of America, Jun 2008; 98: 1207 - 1228. Rodgers, A J, Xie, X, Petersson, A (2007). Bounding Ground Motions for Hayward Fault Scenario Earthquakes Using Suites of Stochastic Rupture Models. S21A0232, AGU Fall Meeting 2007 Rosakis, A. J. Samudrala, O. Coker, D. (1999). Cracks Faster than the Shear Wave Speed. Science, 5418, 1337-1339. Rowshandel, B. (2006), 'Incoporating Source Rupture Characteristic into GroundMotion Hazard Analysis Models', Seismological Research Letters 77(6), 708722. Ruiz J. A. (2007). Modélisation d’accélérogrammes synthétiques large-bande par modélisation de la cinématique de la rupture sismique. PhD thesis, Institut de Physique du Globe de Paris, France. Sadigh, K.; Chang, C. Y.; Egan, J. A.; Makdisi, F. & Youngs, R. R. (1997), 'Attenution Relationships for Shallow Crustal Earthquake Based on California Strong Motion Data', Seismological Research Letters 68(1), 180-190. Savage, J. C. (1967), 'SPECTRA OF S-WAVES RADIATED FROM BILATERAL FRACTURE', Bulletin of the Seismological Society of America 57, 39-54. SCEC/CME Cyber Shake Project, http://epicenter.usc.edu/cmeportal/CyberShake.html Scholz, C. H., Aviles, C. & Wesnousky, S. Bull. seism. Soc. Am. 76, 65-70 (1986) Sekiguchi H. (2007). Validation of a broadband source modeling method of interplate earthquakes. S34A-06, AGU Fall Meeting 2007 Semmane, F., F. Cotton, and M. Campillo. 2005. The 2000 Tottori earthquake: A shallow earthquake with no surface rupture and slip properties controlled by depth. J. Geophys. Res. 110 (B3): B03306, doi:10.1029/2004JB003194. Shakal, A., V. Graizer, M. Huang, H. Haddadi, and K. Lin (2005), Strong-motion data from the M6.0 Parkfield earthquake of September 28, 2004, Proceedings of SMIP05 Seminar on Utilization of Strong Motion Data, Los Angeles, CA, 1-18. Smith, W. H. F., and P. Wessel (1990). Gridding with continuous curvature splines in tension, Geophysics 55, 293-305. Sørensen, B.; Pulidio, N. & Atakan, K. (2007), 'Sensitivity of Ground Motion Simulations to Earthquake Source Parameters: A case of study for Istambul, Turkey.', Bulletin of Seiemological Society of America 97, 881-900. Somerville, P. (2003), 'Magnitude scaling of the near fault rupture directivity pulse', Phys. Earth Planet. Inter. 137, 201?212. Somerville, P.; Smith, N. & Graves, R. (1997), 'Modification of empirical Strong Ground motion Attenuation Realtions to include the Amplitude and Duration Effects of rupture Directivity', Seismological Research Letters 68, N°1, 199-222. Somerville, P. Irikura, K. Graves, R. Sawada, S. Wald, D. Abrahamson, N. Iwasaki, Y. Kagawa, T. Smith, N. Kowada, A., (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seism. Res. Lett., 70, 1, 59-80. Spudich, P., Xu, L., (2002). Documentation of software package Compsyn sxv3.11: programs for earthquake ground motion calculation using complete 1-d green’s functions, International Handbook of Earthquake and Engineering Seismology CD, Int. Ass. Of Seismology and Physics of Earth’s Interior, Academic Press. Spudich, P. & Archuleta, R. (1987), 'Techniques for Earthquake Ground-Motion Calcualtion with Applications to Source Parametrization of finite Faults', Academic Press, Orlando in Seismic Strong Motion Synthetics,Orlando,, 205265. Spudich, P. & Chiou, B. S. (2008), 'Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory', Earthquake Spectra 24(1), 279-298. Spudich, P. & Frazer, L. (1984), 'Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop', Bulletin of the Seismological Society of America 74(6), 2061-2082. SSHAC – Senior Seismi Hazard Commission, 'Guidance for Performing Probabilistic Seismic Hazard Analysis for a Nuclear Plant Site: Example Application to the Southeastern United States', NUREG/CR-6607, UCRL ID-133494, Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001. Strasser, F. O., N. A. Abrahamson, and J. J. Bommer (2009). Sigma: Issues, insights, and challenges. Seismological Research Letters 80, 41–56. Tinti, E.; Fukuyama, E.; Piatanesi, A. & Cocco, M. (2005), 'A Kinematic Sourcetime Function Compatible with eartquake Dynamics', BSSA 95, 1211-1223. Tinti, E.; Spudich, P. & Cocco, M. (2005), 'Earthquake fracture energy inferred from kinematic rupture models on extended faults', Journal of Geophysical Research 110, B12303. Tinti E., Cocco M., Fukuyama E., and Piatanesi A., (2009). Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. Geophys. J. Int., 177,1205-1220. Tothong, P.; Cornell, C. A. & Baker, J. (2007), 'Explicit Directivity-Pulse Inclusion in Probabilistic Seismic Hazard Analysis', Earthquake Spectra 23(4), 867-891. Trifunac, M. D. & Brune, J. N. (1970), 'COMPLEXITY OF ENERGY RELEASE DURING THE IMPERIAL VALLEY, CALIFORNIA, EARTHQUAKE OF 1940', Bulletin of the Seismological Society of America 60, 137-160. Venkataraman, A. & Kanamori, H. (2004), 'Effect of directivity on estimates of radiated seismic energy', JOURNAL OF GEOPHYSICAL RESEARCH 109, B04301. Venkataraman, A.; Rivera, L. & Kanamori, H. (2002), 'Radiated Energy from the 16 October 1999 Hector Mine Earthquake:Regional and Teleseismic Estimates', Bulletin of the Seismological Society of America 92(4), 1256?1265. Wald, J.; Worden, B.; Quitoriano, V. & Pankow, K. (2006), 'ShakeMap Manual - Version 1.0 6/19/06TECHNICAL MANUAL, USERS GUIDE, AND SOFTWARE GUIDE'. Wang, H., H. Igel, F. Gallovic, A. Cochard, and M. Ewald (2008). Source related variations of ground motions in 3-D media: Application to the Newport– Inglewood fault, Los Angeles basin, Geophys. J. Int. 175, 202–214. Wang, Z.; Fukao, Y. & Huang, R. (2008), 'Role of fluids in the initiation of the 2008 Iwate earthquake (M7.2) in northeast Japan', GEOPHYSICAL RESEARCH LETTERS 35, L24303. Wessel, P. and W. H. F. Smith, (1991). Generic Mapping Tools, EOS, Vol. 72, 441. Zeng, Y.; Anderson, J. & Yu, G. (1994), 'A Composite Source Model for Computing Realistic Synthetic Strong Ground Motions', GEOPHYSICAL RESEARCH LETTERS 21(21), 725-728. Zhao D.,Tani H., Mishra O.P. (2004) Crustal heterogeneity in the 2000 western Tottori earthquake region: effect of fluids from slab dehydration. Phys. Earth Planet. Inter. 145, 161-177en
dc.type.methodPhD Thesisen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.obiettivoSpecifico4T. Fisica dei terremoti e scenari cosismicien
dc.description.fulltextopenen
dc.contributor.authorSpagnuolo, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypethesis-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1377-5812-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
Spagnuolo_XXIIciclo_PhD.pdfPhD thsis complete6.64 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

590
checked on Apr 24, 2024

Download(s) 5

1,332
checked on Apr 24, 2024

Google ScholarTM

Check