Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/10036
DC FieldValueLanguage
dc.contributor.authorallCarafa, M. M. C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBarba, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBird, P.; Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, USAen
dc.date.accessioned2015-06-30T11:59:08Zen
dc.date.available2015-06-30T11:59:08Zen
dc.date.issued2015en
dc.identifier.urihttp://hdl.handle.net/2122/10036en
dc.description.abstractWe present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries7/120 (2015)en
dc.subjectTectonicsen
dc.subjectEarthquake ratesen
dc.titleNeotectonics and long-term seismicity in Europe and the Mediterranean regionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber5311–5342en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flowen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probabilityen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.01. Continentsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1002/2014JB011751en
dc.relation.referencesAktug, B. et al. (2009), Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior, J. Geophys. Res., 114(B10), B10404, doi:10.1029/2008JB006000. Akyuz, H. S., G. Ucarkus, E. Altunel, B. Dogan, and A. Dikbas (2013), Paleoseismological investigations on a slow-moving active fault in central Anatolia, Tecer Fault, Sivas, Ann. Geophys., 55(5), 847–857, doi:10.4401/ag-5444. Amante, C., and B. W. Eakins (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Tech. Memo. NESDIS NGDC, 19, 24, doi:10.1594/PANGAEA.769615. Ambraseys, N. N., and J. A. Jackson (1998), Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophys. J. Int., 133(2), 390–406, doi:10.1046/j.1365-246X.1998.00508.x. Armijo, R., B. Meyer, G. C. P. King, A. Rigo, and D. Papanastassiou (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophys. J. Int., 126(1), 11–53, doi:10.1111/j.1365-246X.1996.tb05264.x. Artemieva, I. (2011), The lithosphere: An Interdisciplinary Approach, Cambridge University Press, New York. Baccheschi, P., L. Margheriti, M. S. Steckler (2009), SKS splitting in Southern Italy: Anisotropy variations in a fragmented subduction zone, Tectonophysics, 462(1-4), doi: 10.1016/j.tecto.2007.10.014. Baccheschi, P., L. Margheriti, M. Steckler, E. Boschi (2011), Anisotropy patterns in the subducting lithosphere and in the mantle wedge. A case study: the Southern Italy subduction system, J. Geophys. Res., 116(B8), 5,435 – 5,443, doi: 10.1029/2010JB007961. Barba, S., M. M. C. Carafa, and E. Boschi (2008), Experimental evidence for mantle drag in the Mediterranean, Geophys. Res. Lett., 35(6), L06302, doi:10.1029/2008GL033281. Basili, R. et al. (2013), The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE, , doi:10.6092/INGV.IT-SHARE-EDSF. Available from: http://diss.rm.ingv.it/share-edsf/ Bassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans., 81(48), Fall Meet. Suppl., Abstract S12A–03. Baumgardner, J. R. (1983), A three-dimensional finite element model for mantle convection,Ph.D. dissertation, 271 pp., University of California Los Angeles. Bendick, R. and L.M. Flesch (2013), A review of heterogeneous materials and their implications for relationships between kinematics and dynamics in continents, Tectonics, DOI: 10.1002/tect.20058. Bertotti, G., R. Capozzi, and V. Picotti (1997), Extension controls Quaternary tectonics, geomorphology and sedimentation of the N-Appennies foothills and adjacent Po Plain (Italy), Tectonophysics, 282(1–4), 291–301, doi:10.1016/S0040-1951(97)00229-1. Billi, A., C. Faccenna, O. Bellier, L. Minelli, G. Neri, C. Piromallo, D. Presti, D. Scrocca, and E. Serpelloni (2011), Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean, Bull. la Soc. Geol. Fr., 182(4), 279–303, doi:10.2113/gssgfbull.182.4.279. Bird, P. (1998), Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults, J. Geophys. Res., 103(B5), 10115–10129, doi:10.1029/98JB00198. Bird, P. (2003), An updated digital model of plate boundaries, Geochemistry, Geophys. Geosystems, 4(3), 1–52, doi:10.1029/2001GC000252. Bird, P., and X. Kong (1994), Computer simulations of California tectonics confirm very low strength of major faults, Geol. Soc. Am. Bull., 106(2), 159–174. Bird, P., and Y. Kagan (2004), Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings, Bull. Seismol. Soc. Am., 94(6), 2380–2399, doi:10.1785/0120030107. Bird, P. & Li, Y., 1996. Interpolation of principal stress directions by nonparametric statistics: Global maps with confidence limits, J. Geophys. Res., 101(B3), 5,435 – 5,443. Bird, P., and Z. Liu (2007), Seismic hazard inferred from tectonics: California, Seismol. Res. Lett., 78(1), 37–48, doi:10.1785/gssrl.78.1.37. Bird, P., C. Kreemer, and W. Holt (2010), A long-term forecast of shallow seismicity based on the Global Strain Rate Map, Seismol. Res. Lett., 81(2), 184–194, doi:10.1785/gssrl.81.2.184. Bird, P., Y. Y. Kagan, D. D. Jackson, F. P. Schoenberg, and M. J. Werner (2009), Linear and Nonlinear Relations between Relative Plate Velocity and Seismicity, Bull. Seismol. Soc. Am., 99(6), 3097–3113, doi:10.1785/0120090082. Bird, P., Z. Ben-Avraham, G. Schubert, M. Andreoli, and G. Viola (2006), Patterns of stress and strain rate in southern Africa, J. Geophys. Res., 111(B08402), 1–14, doi:10.1029/2005JB003882. Bird, P., Z. Liu, and W. Rucker (2008), Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis, J. Geophys. Res., 113(B11406), 1–32, doi:10.1029/2007JB005460. Bozkurt, E. (2000), Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications, Geol. Soc. London, Spec. Publ., 173, 385–403, doi:10.1144/GSL.SP.2000.173.01.18. Calais, E., J. Nocquet, F. Jouanne, and M. Tardy (2002), Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001, Geology, 3(7), 651–654, doi:10.1130/0091-7613(2002)030<0651:CSRITW>2.0.CO;2. Caputo, R., A. Chatzipetros, S. Pavlides, and S. Sboras (2013), The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece, Ann. Geophys., 55(5), doi:10.4401/ag-5168. Carafa, M. M. C., and S. Barba (2013), The stress field in Europe: optimal orientations with confidence limits, Geophys. J. Int., 193(2), 531–548, doi:10.1093/gji/ggt024. Carafa, M. M. C., G. Tarabusi and V. Kastelic (2015), SHINE: Web Application for Determining the Horizontal Stress Orientation, Computers & Geosciences, doi: 10.1016/j.cageo.2014.10.001. Catalano, R., Dogloni, C., and S. Merlini (2001), On the Mesozoic Ionian basin, Geophysical Journal International, 144, 49–64. Channell, J. E. T. (1996), Palaeomagnetism and palaeogeography of Adria, Geol. Soc. London, Spec. Publ., 105(1), 119–132, doi:10.1144/GSL.SP.1996.105.01.11. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395(3), 251–268, doi:10.1016/j.tecto.2004.09.013. Console, R., R. Di Giovambattista, P. Favali, B. W. Presgrave, and G. Smriglio (1993), Seismicity of the Adriatic microplate, Tectonophysics, 218(4), 343–354, doi:10.1016/0040-1951(93)90323-C. Corti, G., M. Cuffaro, C. Doglioni, F. Inoocenti, and P. Manetti (2006), Coexisting geodynamic processes in the Sicily Channel, Geol. Soc. Am. Spec. Pap., 409, 83–96, doi:10.1130/2006.2409(05). Cunha, T. A., L. M. Matias, P. Terrinha, A. M. Negredo, F. Rosas, R. M. S. Fernandes, and L. M. Pinheiro (2012), Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data, Geophys. J. Int., 188(3), 850–872, doi:10.1111/j.1365-246X.2011.05328.x. D’Agostino, N., A. Avallone, D. Cheloni, E. D’Anastasio, and S. Mantenuto (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113(B12), doi:10.1029/2008JB005860. D’Agostino, N., E. D’Anastasio, A. Gervasi, I. Guerra, M. R. Nedimović, L. Seeber, and M. Steckler (2011), Forearc extension and slow rollback of the Calabrian Arc from GPS measurements, Geophys. Res. Lett., 38(17), L17304, doi:10.1029/2011GL048270. Del Ben, A., I. Finetti, F. Mongelli, and G. Zito (1994), Seismic and heat flow study of the southern Adriatic Basin, Boll. di Geofis. Teor. e Appl., 36(141-144), 29–44. Della Vedova, B., S. Bellani, G. Pellis, and P. Squarci (2001), Deep temperatures and surface heat flow distribution, in Anatomy of an orogen, The Apennines and adjacent Mediterranean basins, edited by G. B. Vai and I. P. Martini, Kluwer Academy Publishers, , The Netherlands. Déverchère, J. et al. (2005), Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake, Geophys. Res. Lett., 32(4), L04311, doi:10.1029/2004GL021646. Devoti, R., A. Esposito, and G. Pietrantonio (2011), Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary, Earth Planet. Sci. Lett., 311(3-4), 230–241, doi:10.1016/j.epsl.2011.09.034. Devoti, R., F. Riguzzi, M. Cuffaro, and C. Doglioni (2008), New GPS constraints on the kinematics of the Apennines subduction, Earth Planet. Sci. Lett., 273(1-2), 163–174, doi:10.1016/j.epsl.2008.06.031. Di Bucci, D., D. Ridente, U. Fracassi, F. Trincardi, and G. Valensise (2009), Marine palaeoseismology from very high resolution seismic imaging: the Gondola Fault Zone (Adriatic foreland), Terra Nov., 21(5), 393–400, doi:10.1111/j.1365-3121.2009.00895.x. DISS Working Group (2010), Database of Individual Seismogenic Sources (DISS), Version 3.1.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, , doi:10.6092/INGV.IT-DISS3.1.1. Doglioni, C. (1990), The global tectonic pattern, J. Geodyn., 12(1), 21–38, doi:10.1016/0264-3707(90)90022-M. Duarte, J.C., Rosas, F.M., Terrinha, P., Schellart, W.P., Boutelier, D., Gutscher, M.A., Ribeiro, A. (2013), Are subduction zones invading the Atlantic? Evidence from the SW Iberia margin. Geology, doi:10.1130/G34100.1. Ekström, G., M. Nettles, and A. M. Dziewoński (2012), The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1–9, doi:10.1016/j.pepi.2012.04.002. Faccenda, M., G. Minelli and T.V. Gerya (2009), Coupled and decoupled regimes of continental collision: numerical modeling, Earth and Planet. Sci. Lett., 278 (2009), 337–349. Faccenna, C., and T. Becker (2010), Shaping mobile belts by small-scale convection, Nature, 465(7298), 602–605, doi:10.1038/nature09064. Faccenna, C. et al. (2014), Mantle dynamics in the Mediterranean, Rev. Geophys., 52(3), 2013RG000444, doi:10.1002/2013RG000444. Field, E. H. et al. (2013), Unified California Earthquake Rupture Forecast, version 3 (UCERF3)-The time-independent model, U.S. Geol. Surv. Open-File Rep., 2013-1165(Cal. Geol. Surv. Spec. Rep. 228, South. Calif. Earthq. Cent. Pub. 1792), 97 pages. Available from: http://pubs.usgs.gov/of/2013/1165/. Floyd, M. A. et al. (2010), A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean, J. Geophys. Res., 115(B10), B10403, doi:10.1029/2009JB007040. Frizon de Lamotte, D., Saint Bezar, B., Bracene, R. and Mercier, E., (2000)- The two main steps of the Atlas building and Geodynamics of West Mediterranean, Tectonics, 19, 740-761. Garthwaite, M.C. and G.A. Houseman (2011), Validity of the thin viscous sheet approximation in models of continental collision, J. Geophys. Res., 116(B2): doi: 10.1029/2010JB007770. Giardini, D., J. Wössner and L. Danciu (2014), Mapping Europe's Seismic Hazard, Eos Trans. AGU, 95(29), 261. Giardini, D., J. Woessner, L. Danciu, G. Valensise, G. Grünthal, F. Cotton, S. Akkar, R. Basili, M. Stucchi, A. Rovida, D. Stromeyer, R. Arvidsson, F. Meletti, R. Musson, R., K. Sesetyan, M. B. Demircioglu, H. Crowley, R. Pinho, K. Pitilakis, J. Douglas, J. Fonseca, M. Erdik, A. Campos-Costa, B. Glavatovic, K. Makropoulos, C. Lindholm, T. Cameelbeeck, Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi: 10.12686/SED-00000001-SHARE, 2013.Goes, S., D. Giardini, S. Jenny, C. Hollenstein, H. Kahle, and A. Geiger (2004), A recent tectonic reorganization in the south-central Mediterranean, Earth Planet. Sci. Lett., 226(3-4), 335–345, doi:10.1016/j.epsl.2004.07.038. Grünthal, G., and R. Wahlström (2012), The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium, J. Seismol., 16(3), 535–570, doi:10.1007/s10950. Grünthal, G., R. Wahlström, and D. Stromeyer (2013), The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC), J. Seismol., 17(4), 1339–1344, doi:10.1007/s10950-013-9379-y. Guidoboni, E., Comastri, A., Traina, G. (1994), Catalogue of ancient earthquakes in the Mediterranean area up to the 10th Century. ING-SGA, Rome-Bologna, Italy, 504. Duarte, J.C., Rosas, F.M., Terrinha, P., Schellart, W.P., Boutelier, D., Gutscher, M.A., Ribeiro, A. (2013), Are subduction zones invading the Atlantic? Evidence from the SW Iberia margin. Geology, doi:10.1130/G34100.1. Heidbach, O., M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller (2008), The World Stress Map database release 2008, , doi:10.1594/GFZ.WSM.Rel2008. Howe, T. M., and P. Bird (2010), Exploratory models of long-term crustal flow and resulting seismicity across the Alpine-Aegean orogen, Tectonics, 29(4), TC4023, doi:10.1029/2009TC002565. Jaupart, C., S. Labrosse, and J. C. Mareschal (2007), Temperatures, Heat and Energy in the Mantle of the Earth, in Treatise on Geophysics, vol. 7, edited by G. Schubert, pp. 253–303, Elsevier, Amsterdam. Jiménez-Munt, I., and A. M. Negredo (2003), Neotectonic modelling of the western part of the Africa–Eurasia plate boundary: from the Mid-Atlantic ridge to Algeria, Earth Planet. Sci. Lett., 205(3), 257–271, doi:10.1016/S0012-821X(02)01045-2. Jiménez-Munt, I., and R. Sabadini (2002), The block-like behavior of Anatolia envisaged in the modeled and geodetic strain rates, Geophys. Res. Lett., 29(20), 1–4, doi:10.1029/2002GL015995. Jiménez-Munt, I., M. Fernàndez, M. Torne, and P. Bird (2001a), The transition from linear to diffuse plate boundary in the Azores–Gibraltar region: results from a thin-sheet model, Earth Planet. Sci. Lett., 192(2), 175–189, doi:10.1016/S0012-821X(01)00442-3. Jiménez-Munt, I., P. Bird, and M. Fernàndez (2001b), Thin-shell modeling of neotectonics in the Azores-Gibraltar Region, Geophys. Res. Lett., 28(6), 1083–1086, doi:10.1029/2000GL012319. Jiménez-Munt, I., R. Sabadini, A. Gardi, and G. Bianco (2003), Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data, J. Geophys. Res., 108(B1), 1–24, doi:10.1029/2001JB001544. Jolivet, L. et al. (2013), Aegean tectonics: Strain localisation, slab tearing and trench retreat, Tectonophysics, 597-598, 1–33, doi:10.1016/j.tecto.2012.06.011. Jolivet, L., C. Faccenna, and C. Piromallo (2009), From mantle to crust: Stretching the Mediterranean, Earth Planet. Sci. Lett., 285(1-2), 198–209, doi:10.1016/j.epsl.2009.06.017. Kaneko Y, Fialko Y, Sandwell DT, Tong X, and M. Furuya (2013) Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J Geophys Res, 118, 316–331, doi:10.1029/2012JB009661 Karato, S.-i., Jung, H., Katayama, I., and Skemer, P., (2008), Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95. http://dx.doi.org/10.1146/annurev.earth.36.031207.124120. Kastelic, V., and M. M. C. Carafa (2012), Fault slip rates for the active External Dinarides thrust-and-fold belt, Tectonics, 31, TC3019, doi:10.1029/2011TC003022. Koc̡yiğit, A., and A. Beyhan (1998), A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey, Tectonophysics, 284(3), 317–336, doi:10.1016/S0040-1951(97)00176-5. Koçyiǧit, A., and A. Beyhan (1999), Reply to Rob Westaway’s Comment on “A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey,” Tectonophysics, 314(4), 481–496, doi:10.1016/S0040-1951(99)00227-9. Kong, X., and P. Bird (1995), SHELLS: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults, J. Geophys. Res., 100(B11), 22129, doi:10.1029/95JB02435. Koulali, A., D. Ouazar, A. Tahayt, R. W. King, P. Vernant, R. E. Reilinger, S. McClusky, T. Mourabit, J. M. Davila, and N. Amraoui (2011), New GPS constraints on active deformation along the Africa–Iberia plate boundary, Earth Planet. Sci. Lett., 308(1), 211–217, doi:10.1016/j.epsl.2011.05.048. Kreemer, C., G. Blewitt, E.C. Klein (2014), A geodetic plate motion and Global Strain Rate Model, Geochemistry, Geophysics, Geosystems, 15, 3849-3889, doi:10.1002/2014GC005407. Kreemer, C., N. Chamot-Rooke, and X. Le Pichon (2004), Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data, Earth Planet. Sci. Lett., 225(3), 329–346, doi:10.1016/j.epsl.2004.06.018. Kukkonen, I. ., and R. Lahtinen (2001), Variation of radiogenic heat production rate in 2.8–1.8 Ga old rocks in the central Fennoscandian shield, Phys. Earth Planet. Inter., 126(3), 279–294, doi:10.1016/S0031-9201(01)00261-8. Lavecchia, G., F. Ferrarini, and R. De Nardis (2007), Active thrusting as a possible seismogenic source in Sicily (Southern Italy): Some insights from integrated structural–kinematic and seismological data, Tectonophysics, 445(3-4), 145–167, doi:10.1016/j.tecto.2007.07.007. Le Pichon, X., and C. Kreemer (2010), The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics, Annu. Rev. Earth Planet. Sci., 38(1), 323–351, doi:10.1146/annurev-earth-040809-152419. Lechmann S.M., D.A. May, B.J.P. Kaus, S.M. Schmalholz (2011), Comparing thin-sheet models with 3D multilayer models for continental collision. Geophysical Journal International. 187, 10-33. doi: 10.1111/j.1365-246X.2011.05164.x Leeds, A. R., L. Knopoff, and E. G. Kausel (1974), Variations of Upper Mantle Structure under the Pacific Ocean, Science, 186(4159), 141–143, doi:10.1126/science.186.4159.141. Lenkey, L., P. Dövényi, F. Horváth, and S. A. P. L. Cloetingh (2002), Geothermics of the Pannonian basin and its bearing on the neotectonics, Stephan Mueller Spec. Publ. Ser., 3. Lister, C. R. B., J. G. Sclater, S. Nagihara, E. E. Davis, and H. Villinger (1990), Heat flow maintained in ocean basins of great age - Investigations in the north-equatorial West Pacific, Geophys. J. Int., 102, 603–630, doi:10.1111/j.1365-246X.1990.tb04586.x. Liu, Z., and P. Bird (2002a), Finite element modeling of neotectonics in New Zealand, J. Geophys. Res., 107(B12), 1–18, doi:10.1029/2001JB001075. Liu, Z., and P. Bird (2002b), North America plate is driven westward by lower mantle flow, Geophys. Res. Lett., 29(24), 2–5, doi:10.1029/2002GL016002. Louvari, E., A. Kiratzi, and B. Papazachos (1999), The Cephalonia transform fault and its extension to western Lefkada Island (Greece), Tectonophysics, 308, 223–236, doi:10.1016/S0040-1951(99)00078-5. Makropoulos, K., G. Kaviris, and V. Kouskouna (2012), An updated and extended earthquake catalogue for Greece and adjacent areas since 1900, Nat. Hazards Earth Syst. Sci., 12(5), 1425–1430, doi:10.5194/nhess-12-1425-2012. Malinverno, A. (2012), Evolution of the Tyrrhenian Sea-Calabrian Arc system: The past and the present, Rend. online Soc. Geol. It., 21, 11–15. Malservisi, R., U. Hugentobler, R. Wonnacott, and M. Hackl (2013), How rigid is a rigid plate? Geodetic constraint from the TrigNet CGPS network, South Africa, Geophys. J. Int., 192, 918–928, doi:10.1093/gji/ggs081. Mansinha, L., and D. E. Smylie (1967), Effect of earthquakes on the Chandler wobble and the secular polar shift, J. Geophys. Res., 72(18), 4731–4743, doi:10.1029/JZ072i018p04731. Mansinha, L., and D. E. Smylie (1971), The displacement fields of inclined faults, Bull. Seismol. Soc. Am., 61(5), 1433–1440. Martínez-Díaz J. J. , E Masana, M Ortuño (2012), Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain, Journal of Iberian Geology, 38 (1), 253-271. Mattia, M., V. Bruno, F. Cannavò, and M. Palano (2012), Evidences of a contractional pattern along the northern rim of the Hyblean Plateau (Sicily, Italy) from GPS data, Geol. Acta, 10, 1–9, doi:10.1344/105000001705. McKenzie, D. P. (1972), Active tectonics of the Mediterranean region, Geophys. J. R. Astron. Soc., 30, 109–185, doi:10.1111/j.1365-246X.1972.tb02351.x. McKenzie, D. P. (1970), Plate tectonics of the Mediterranean region., Nature, 226(5242), 239–43, doi:10.1038/226239a0. Meghraoui, M., and F. Doumaz (1996), Earthquake-induced flooding and paleoseismicity of the El Asnam, Algeria, fault-related fold, J. Geophys. Res., 101(B8), 17617, doi:10.1029/96JB00650. Milivojević, M. G. (1993), Geothermal model of Earth’s crust and lithosphere for the territory of Yugoslavia: Some tectonic implications, Stud. Geophys. Geod., 37(3), 265–278, doi:10.1007/BF01624600. Molinari, I., and A. Morelli (2011), EPcrust: a reference crustal model for the European Plate, Geophys. J. Int., 185(1), 352–364, doi:10.1111/j.1365-246X.2011.04940.x. Molinari, I., V. Raileanu, and A. Morelli (2012), A Crustal Model for the Eastern Alps Region and a New Moho Map in Southeastern Europe, Pure Appl. Geophys., 169, 1575–1588, doi:10.1007/s00024-011-0431-y. Müller, B., O. Heidbach, M. Negut, B. Sperner, and T. Buchmann (2010), Attached or not attached—evidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania, Tectonophysics, 482(1), 139–149, doi:10.1029/2001JB000743. Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates, and spreading asymmetry of the world’s ocean crust, Geochemistry, Geophys. Geosystems, 9(4), 1–19, doi:10.1029/2007GC001743. Müller, R. D., W. R. Roest, J.-Y. Royer, L. M. Gahagan, and J. G. Sclater (1997), Digital isochrons of the world’s ocean floor, J. Geophys. Res. Solid Earth, 102(B2), 3211–3214, doi:10.1029/96JB01781. Musumeci, C., Scarfì, L., Palano, M.,and D. Patanè (2014), Foreland segmentation along an active convergent margin: New constraints in southeastern Sicily (Italy) from seismic and geodetic observations, Tectonophysics, 630, 137–149, 10.1016/j.tecto.2014.05.017 Negredo, A. M., I. Jiménez-Munt, and A. Villaseñor (2004), Evidence for eastward mantle flow beneath the Caribbean plate from neotectonic modeling, Geophys. Res. Lett., 31(6), doi:10.1029/2003GL019315. Negredo, A. M., P. Bird, C. Sanz de Galdeano, and E. Buforn (2002), Neotectonic modeling of the Ibero-Maghrebian region, J. Geophys. Res., 107(B11), doi:10.1029/2001JB000743. Nocquet, J.-M. (2012), Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results, Tectonophysics, 579, 220–242, doi:10.1016/j.tecto.2012.03.037. Nyst, M., and W. Thatcher (2004), New constraints on the active tectonic deformation of the Aegean, J. Geophys. Res., 109(B11), B11406, doi:10.1029/2003JB002830. Ocakoğlu, F. (2007), A re-evaluation of the Eskişehir Fault Zone as a recent extensional structure in NW Turkey, J. Asian Earth Sci., 31(2), 91–103, doi:10.1016/j.jseaes.2007.05.002. Oglesby, D. D., P. M. Mai, K. Atakan, and S. Pucci (2008), Dynamic models of earthquakes on the North Anatolian fault zone under the Sea of Marmara: Effect of hypocenter location, Geophys. Res. Lett., 35, L18302, doi:10.1029/2008GL035037. Özeren, M., and W. Holt (2010), The dynamics of the eastern Mediterranean and eastern Turkey, Geophys. J. Int., 1165–1184, doi:10.1111/j.1365-246X.2010.04819.x. Özsayin, E., and K. Dirik (2009), Quaternary Activity of the Cihanbeyli and Yeniceoba Fault Zones: İnönü-Eskişehir Fault System, Central Anatolia, Turkish J. Earth Sci., 16(4), 471–492. Papadopoulos, G.A (1989), Seismic and volcanic activities and aseismic movements as plate motion components in the Aegean area, Tectonophysics, 167, 31-39, 1989. Papadopoulos, G.A., D. Kondopoulou, G.-A. Leventakis and S. Pavlides. Seismotectonics of the Aegean region. Tectonophysics, 124, 67-84, 1986. Pasquale, V., M. Verdoya, and P. Chiozzi (1996), Heat flux and timing of the drifting stage in the Ligurian-Provençal basin (northwestern Mediterranean), J. Geodyn., 21(3), 205–222, doi:10.1016/0264-3707(95)00035-6. Pérouse, E., N. Chamot-Rooke, A. Rabaute, P. Briole, F. Jouanne, I. Georgiev, and D. Dimitrov (2012), Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: Implications for crustal dynamics and mantle flow: Central to East Mediterranean kinematics, Geochemistry, Geophys. Geosystems, 13(9), doi:10.1029/2012GC004289. Petricca, P., M. M. C. Carafa, S. Barba, and E. Carminati (2013), Local, regional, and plate scale sources for the stress field in the Adriatic and Periadriatic region, Mar. Pet. Geol., 42, 160–181, doi:10.1016/j.marpetgeo.2012.08.005. Piccardi, L., Y. Gaudemer, P. Tapponnier, and M. Boccaletti (1999), Active oblique extension in the central Apennines (Italy): evidence from the Fucino region, Geophys. J. Int., 139(2), 499–530, doi:10.1046/j.1365-246x.1999.00955.x. Platt, J. P., W. M. Behr, K. Johanesen, and J. R. Williams (2013), The Betic-Rif Arc and Its Orogenic Hinterland: A Review, Annu. Rev. Earth Planet. Sci., 41(1), 313–357, doi:10.1146/annurev-earth-050212-123951. Pondrelli, S., C. Piromallo, and E. Serpelloni (2004), Convergence vs. retreat in Southern Tyrrhenian Sea: Insights from kinematics, Geophys. Res. Lett., 31, 2–5, doi:10.1029/2003GL019223. Pondrelli S., Salimbeni S., Morelli A., Ekström G., Postpischl L., Vannucci G. and Boschi E. (2011) European-Mediterranean Regional Centroid Moment Tensor Catalog: solutions for 2005-2008, Phys. Earth Planet. Int., 185, 3-4, doi :10.1016/j.pepi.2011.01.007. Presti, D., A. Billi, B. Orecchio, and C. Totaro (2013), Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy, Tectonophysics, 602, 153–175, doi:10.1016/j.tecto.2013.01.030. Provost, A., J. Chéry, and R. Hassani (2003), 3D mechanical modeling of the GPS velocity field along the North Anatolian fault, Earth Planet. Sci. Lett., 209, 361–377, doi:10.1016/S0012-821X(03)00099-2. Radulov, A. (2007), Active faults in the Plovdiv Depression and their long-term slip rate, Geol. Balc., 36, 51–56. Reilinger, R. et al. (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 111(B5), B05411, doi:10.1029/2005JB004051. Ritsema, J., A. Deuss, H. J. van Heijst, and J. H. Woodhouse (2011), S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223–1236, doi:10.1111/j.1365-246X.2010.04884.x. Ritsema, J., and H. J. Van Heijst (2000), Seismic imaging of structural heterogeneity in Earth’s mantle: evidence for large-scale mantle flow, Sci. Prog., 83(3), 243–259. Rovida, A., R. Camassi, P. Gasperini, and M. Stucchi (2011), CPTI11, the 2011 version of the Parametric Catalogue of Italian Earthquakes, , doi:10.6092/INGV.IT-CPTI11. Available from: http://emidius.mi.ingv.it/CPTI Rutter, E. H., R. H. Maddock, S. H. Hall, and S. H. White (1986),Comparative microstructures of natural and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3 – 30. Sartori, R. (2004), The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere, Episodes, 26(3), 217–221. Scisciani, V., and F. Calamita (2009), Active intraplate deformation within Adria: Examples from the Adriatic region, Tectonophysics, 476(1-2), 57–72, doi:10.1016/j.tecto.2008.10.030. Scuderi, M., Niemeijerc, A. R., Collettini, C. and C. Marone (2013), Frictional properties and slip stability of active faults within carbonate–evaporite sequences: The role of dolomite and anhydrite, Earth Planet. Sci. Lett., 369, 220–232. Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini (2007), Kinematics of the western Africa-Eurasia plate boundary from focal mechanisms and GPS data, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03367.x. Sesetyan, K., M. Demircioglu, A. Rovida, P. Albini, and M. Stucchi (2013), SHARE-CET, the SHARE earthquake catalogue for Central and Eastern Turkey complementing the SHARE European Earthquake Catalogue (SHEEC), Available from: http://www.emidius.eu/SHEEC/ Solum, J.G. and B.A. van der Pluijm (2009) Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior Tectonophysics, 475 (3–4), 554–562. Shaw, B., N. N. Ambraseys, P. C. England, M. A. Floyd, G. J. Gorman, T. F. G. Higham, J. A. Jackson, J.-M. Nocquet, C. C. Pain, and M. D. Piggott (2008), Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake, Nat. Geosci., 1(4), 268–276, doi:10.1038/ngeo151. Stein, C. A., and S. Stein (1992), A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359(6391), 123–129, doi:10.1038/359123a0. Stucchi, M. et al. (2013), The SHARE European Earthquake Catalogue (SHEEC) 1000–1899, J. Seismol., 17(2), 523–544, doi:10.1007/s10950-012-9335-2. Stucchi, M., C. Meletti, V. Montaldo, H. Crowley, G. M. Calvi, and E. Boschi (2011), Seismic Hazard Assessment (2003-2009) for the Italian Building Code, Bull. Seismol. Soc. Am., 101(4), 1885–1911, doi:10.1785/0120100130. Stucchi, M., R. Camassi, A. Rovida, M. Locati, E. Ercolani, C. Meletti, P. Migliavacca, F. Bernardini, and R. Azzaro (Editors) (2007). DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04 , Quaderni di Geofisica, Istituto Nazionale di Geofisica eVulcanologia, Rome, Vol. 49, 38 pp., doi:10.6092/INGV.IT-DBMI04,http://emidius.mi.ingv.it/DBMI04/ (last accessed January 2014). Ten Veen, J. H., J. M. Woodside, T. A. . Zitter, J. F. Dumont, J. Mascle, and A. Volkonskaia (2004), Neotectonic evolution of the Anaximander Mountains at the junction of the Hellenic and Cyprus arcs, Tectonophysics, 391, 35–65, doi:10.1016/j.tecto.2004.07.007. Tesei, T., Collettini, C., Carpenter, B. M., Viti, C., Marone C. (2012), Frictional strength and healing behavior of phyllosilicate-rich faults J. Geophys. Res., 117, B09402 http://dx.doi.org/10.1029/2012JB009204. Tortorici, L., C. Monaco, C. Tansi, and O. Cocina (1995), Recent and active tectonics in the Calabrian arc (Southern Italy), Tectonophysics, 243(1-2), 37–55, doi:10.1016/0040-1951(94)00190-K. Vanneste, K., A. Radulov, P. De Martini, G. Nikolov, T. Petermans, K. Verbeeck, T. Camelbeeck, D. Pantosti, D. Dimitrov, and S. Shanov (2006), Paleoseismologic investigation of the fault rupture of the 14 April 1928 Chirpan earthquake ( M 6.8), southern Bulgaria, J. Geophys. Res., 111(B1), doi:10.1029/2005JB003814. Vergés, J., and M. Fernàndez (2012), Tethys–Atlantic interaction along the Iberia–Africa plate boundary: The Betic–Rif orogenic system, Tectonophysics, 579, 144–172, doi:10.1016/j.tecto.2012.08.032. Vernant, P., A. Fadil, T. Mourabit, D. Ouazar, A. Koulali, J. M. Davila, J. Garate, S. McClusky, and R. Reilinger (2010), Geodetic constraints on active tectonics of the Western Mediterranean: Implications for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone, J. Geodyn., 49(3), 123–129, doi:10.1016/j.jog.2009.10.007. Villani, F., and S. Pierdominici, (2010), Late Quaternary tectonics of the Vallo di Diano basin (southern Apennines, Italy). Quaternary Science Reviews, 29, 3167-3183, doi: 10.1016/j.quascirev.2010.07.003 Westaway, R. (1999), Comment on “A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey” by A. Koçyiğit and A. Beyhan, Tectonophysics, 314(4), 469–479, doi:10.1016/S0040-1951(99)00223-1. Yielding, G., M. Ouyed, G. C. P. King, and D. Hatzfeld (1989), Active tectonics of the Algerian Atlas Mountains-evidence from aftershocks of the 1980 El Asnam earthquake, Geophys. J. Int., 99(3), 761–788, doi:10.1111/j.1365-246X.1989.tb02057.x. Zitellini, N., E. Gràcia, L. Matias, P. Terrinha, M. A. Abreu, G. DeAlteriis, J. P. Henriet, J. J. Dañobeitia, D. G. Masson, and T. Mulder (2009), The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar, Earth Planet. Sci. Lett., 280(1-4), 13–50, doi:10.1016/j.epsl.2008.12.005.en
dc.description.obiettivoSpecifico1T. Geodinamica e interno della Terraen
dc.description.obiettivoSpecifico2T. Tettonica attivaen
dc.description.obiettivoSpecifico3T. Pericolosità sismica e contributo alla definizione del rischioen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0148-0227en
dc.contributor.authorCarafa, M. M. C.en
dc.contributor.authorBarba, S.en
dc.contributor.authorBird, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth, Planetary and Space Sciences, University of California, Los Angeles, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-5463-463X-
crisitem.author.orcid0000-0001-7965-6667-
crisitem.author.orcid0000-0001-9034-1287-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2014JB011751RR-Manuscript.pdfManuscript580.03 kBAdobe PDFView/Open
All_figures.pdfFigures10.48 MBAdobe PDFView/Open
2014JB011751RR-Supporting-Information_template.pdfSupporting Information File4.6 MBAdobe PDFView/Open
2014JB011751RR-ds01.txtSupporting Information File - Plate boundaries341.46 kBTextView/Open
2014JB011751RR-ds02.txtSupporting Information File - Grid817.98 kBTextView/Open
2014JB011751RR-ds03.txtSupporting Information File - Heat Flow390.26 kBTextView/Open
2014JB011751RR-ds04.txtSupporting Information File - Velocity Output242.5 kBTextView/Open
2014JB011751RR-ds05.txtSupporting Information File - Earthquake rates Mw>6247.53 kBTextView/Open
2014JB011751RR-ds06.txtSupporting Information File - Earthquake rates Mw>6.5247.53 kBTextView/Open
2014JB011751RR-ds07.txtSupporting Information File - Earthquake rates Mw>7247.53 kBTextView/Open
2014JB011751RR-ds08.txtSupporting Information File - Earthquake rates Mw>8247.53 kBTextView/Open
2014JB011751RR-ds09.txtSupporting Information File - Outline areas4.92 kBTextView/Open
Show simple item record

WEB OF SCIENCETM
Citations

24
checked on Feb 10, 2021

Page view(s) 5

576
checked on Apr 17, 2024

Download(s) 5

1,775
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric