Options
Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring
Author(s)
Language
English
Obiettivo Specifico
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/10 (2020)
Publisher
Nature P. G.
Pages (printed)
10296
Issued date
June 24, 2020
Subjects
early warning
seismic precursor
Keywords
Abstract
Two paroxysmal explosions occurred at Stromboli volcano in the Summer 2019, the first of which,
on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions. However, we have calculated the polarization and the fractal dimension time series of the seismic signals from November 15, 2018 to September 15, 2019 and we have recognized variations that preceded the paroxysmal activity. In addition, we have defined a new parameter, based on RSAM estimation, related to the Very Long Period events, called VLP size, by means of which we have noticed significant variations through the whole month preceding the paroxysm of July 3. In the short term, we have analyzed the signals of a borehole strainmeter installed on the island, obtaining automatic triggers 10 minutes and 7.5 minutes before the July 3 and the August 28 paroxysms, respectively.
The results of this study highlight mid-term seismic precursors of paroxysmal activity and provide valuable evidence for the development of an early warning system for paroxysmal explosions based on strainmeter measurements
on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions. However, we have calculated the polarization and the fractal dimension time series of the seismic signals from November 15, 2018 to September 15, 2019 and we have recognized variations that preceded the paroxysmal activity. In addition, we have defined a new parameter, based on RSAM estimation, related to the Very Long Period events, called VLP size, by means of which we have noticed significant variations through the whole month preceding the paroxysm of July 3. In the short term, we have analyzed the signals of a borehole strainmeter installed on the island, obtaining automatic triggers 10 minutes and 7.5 minutes before the July 3 and the August 28 paroxysms, respectively.
The results of this study highlight mid-term seismic precursors of paroxysmal activity and provide valuable evidence for the development of an early warning system for paroxysmal explosions based on strainmeter measurements
Sponsors
This work benefited from funds of the EU (DG ECHO) Project EVE n. 826292 and was partially supported by the project INGV-FISR-2017 “Sale Operative Integrate e Reti di Monitoraggio del Futuro: l’INGV 2.0”. The data used in this study were provided by the Istituto Nazionale di Geofisica e Vulcanologia (Osservatorio Vesuviano, Osservatorio Etneo). The authors are also grateful to the Italian Presidenza del Consiglio dei Ministri- Dipartimento della Protezione Civile (DPC) for supporting the monitoring activities at Stromboli.
References
1. Neri, M. & Lanzafame, G. Structural features of the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 182, 137–144 (2009).
2. Calvari, S. et al. Major eruptive style changes induced by structural modifications of a shallow conduit system: the 2007-2012
Stromboli case. Bull. Volcanol. 76, 841 (2014).
3. Tioukov, V. et al. First muography of Stromboli volcano. Sci. Rep. 9, 6695 (2019).
4. Falsaperla, S. & Spampinato, S. Seismic insight into explosive paroxysms at Stromboli volcano, Italy. J. Volcanol. Geotherm. Res. 125,
137–150 (2003).
5. Calvari, S. et al. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multiparametric characterization of the event and
quantification of the ejecta. J. Geophys. Res. 117, B05201 (2012).
6. Barberi, F., Rosi, M. & Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 3, 173–187
(1993).
7. Rosi, M. et al. Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. In Lucchi, F., Peccerillo, A., Keller, J.,
Tranne, C. A. & Rossi, P. L. (eds.) The Aeolian Islands Volcanoes, vol. 37, chap. 14, 473–490 (Geological Society, London, 2013).
8. D’Auria, L., Giudicepietro, F., Martini, M. & Peluso, R. Seismological insight into the kinematics of the 5 April 2003 vulcanian
explosion at Stromboli volcano (southern Italy). Geophys. Res. Lett. 33, L08308 (2006).
9. Pistolesi, M. et al. The paroxysmal event and its deposits. In Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M. & Rosi, M. (eds.) The Stromboli Volcano: An integrated study of the 2002-2003 eruption, no. 182 in Geophysical Monograph Series, 317–329 (AGU, 2008).
10. Pistolesi, M., Delle Donne, D., Pioli, L., Rosi, M. & Ripepe, M. The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J. Geophys. Res. 116, B12206 (2011).
11. Calvari, S., Spampinato, L. & Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 149, 160–175 (2006).
12. Pino, N. A., Moretti, R., Allard, P. & Boschi, E. Seismic precursors of a basaltic paroxysmal explosion track deep gas accumulation and slug upraise. J. Geophys. Res. 116, B02312 (2011).
13. Bonaccorso, A., Calvari, S., Linde, A., Sacks, S. & Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March, 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 357–358, 249–256 (2012).
14. Burton, M. R., Caltabiano, T., Murè, F., Salerno, G. & Randazzo, D. SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220 (2009).
15. Delle Donne, D. et al. Exploring the explosive-effusive transition using permanent ultraviolet cameras. J. Geophys. Res. Solid Earth 122, 4377–4394 (2017).
16. Tibaldi, A. Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull. Volcanol. 63, 112–125 (2001).
17. Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L. & Patanè, D. Dynamics of the December 2002 flank failure and tsunami at Stromboli
volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 30, 1941 (2003).
18. Pino, N. A., Ripepe, M. & Cimini, G. B. The Stromboli Volcano landslides of December 2002: A seismological description. Geophys.
Res. Lett. 31, L02605 (2004).
19. Tinti, S., Pagnoni, G. & Zaniboni, F. The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through
numerical simulations. Bull. Volcanol. 68, 462–479 (2006).
20. Rosi, M. et al. A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet. Sci.
Lett. 243, 594–606 (2006).
21. Aiuppa, A. et al. Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37 (2010).
22. Calvari, S. et al. Lava effusion – A slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 301, 317–323 (2011).
23. Ripepe, M. et al. Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci. Rep. 7
(2017).
24. Martini, M. et al. Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano. Ann. Geophys-Italy 50,
775–788 (2007).
25. Ripepe, M., Delle Donne, D., Lacanna, G., Marchetti, E. & Ulivieri, G. The onset of the 2007 Stromboli effusive eruption recorded by
an integrated geophysical network. J. Volcanol. Geotherm. Res. 182, 131–1136 (2009).
26. Calvari, S. et al. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. 115,
B04201 (2010).
27. Rizzo, A. L. et al. The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil co2 flux and he/he ratio in thermal
waters. Geophys. Res. Lett. 42, 2235–2243 (2015).
28. Valade, S. et al. Tracking dynamics of magma migration in open-conduit systems. Bull. Volcanol. 78, 78 (2016).
29. Di Traglia, F. et al. The 2014 effusive eruption at Stromboli: New insights from in situ and remote-sensing measurements. Remote
Sens. 10, 1–21 (2018).
30. Giudicepietro, F. et al. Integration of ground-based remote-sensing and in situ multidisciplinary monitoring data to analyze the
eruptive activity of Stromboli volcano in 2017-2018. Remote Sens. 11, 1813 (2019).
31. Plank, S. et al. The July/August 2019 lava flows at the Sciara del Fuoco, Stromboli-Analysis from multi-sensor infrared satellite
imagery. Remote Sens. 11, 2879 (2019).
32. De Cesare, W. et al. The broadband seismic network of Stromboli volcano, Italy. Seism. Res. Lett. 80, 435–439 (2009).
33. Linde, A. T., Agustsson, K., Sacks, I. S. & Stefansson, R. Mechanism of the 1991 eruption of Hekla from continuous borehole strain
monitoring. Nature 365, 737–740 (1993).
34. Chouet, B. et al. Source and path effects in the wavefields of tremor and explosions at Stromboli Volcano, Italy. J. Geophys. Res. 102,
15129–15150 (1997).
35. Chouet, B. et al. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversion of very-
long period data. J. Geophys. Res. 108, 1–25 (2003).
36. Giudicepietro, F. et al. Changes in the VLP seismic source during the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 182,
162–171 (2009).
37. Neuberg, J., Luckett, R., Ripepe, M. & Braun, T. Highlights from a seismic broadband array on Stromboli volcano. Geophys. Res. Lett.
21, 749–752 (1994).
38. Ripepe, M., Ciliberto, S. & Della Schiava, M. Time contrains for modeling source dynamics of volcano explosions at Stromboli. J.
Geophys. Res. 106, 8713–8727 (2001).
39. Ripepe, M. & Gordeev, E. Gas bubble dynamics model for shallow volcanic tremor at. Stromboli. J. Geophys. Res. Solid Earth 104(10),
639–10,654 (1999).
40. Esposito, A. M. et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli
Volcano using neural networks. BSSA 96, 1230–1240 (2006).
41. Esposito, A. M., D’Auria, L., Giudicepietro, F. & Martini, M. Waveform variation of the explosion-quakes as a function of the
eruptive activity at Stromboli volcano. In Apolloni, B., Bassis, S., Esposito, A. & F., M. (eds.) Neural Nets and Surroundings. Smart
Innovation, Systems and Technologies, vol. 19, 111–119 (Springer, Berlin, Heidelberg, 2013).
42. Di Traglia, F., Battaglia, M., Nolesini, T., Lagomarsino, D. & Casagli, N. Shifts in the eruptive styles at Stromboli in 2010-2014
revealed by ground-based InSAR data. Sci. Rep. 5, 13569 (2015).
43. Borman, P. (ed.) New Manual of Seismological Observatory Practice (NMSOP-2 (IASPEI, GFZ Germany Research Centre for
Geosciences, Potsdam). http://nmsop.gfz-potsdam.de, 2012.
44. Krischer, L. et al. Obspy: a bridge for seismology into the scientific python ecosystem. Comput. Sci. Discov. 8, 014003 (2015).
45. Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models: Introduction of a
Metropolis-Gibbs method and comparison with linear locations. In Thurber, C. H. & Rabinowitz, N. (eds.) Advances in seismic
event location, chap. 5, 101–134 (Kluver Academic Publishers, Amsterdam, 2000).
46. Luongo, G., Mazzarella, A. & Palumbo, A. A fractal approach to clustering of the 1983-1984 seismicity in the Campi Flegrei Caldera,
southern Italy. Fractals 9 (1996).
47. Vinciguerra, S., Gresta, S., Barbano, M. S. & Distefano, G. The two behaviours of Mt. Etna Volcano before and after a large intrusive
episode: evidences from b value and fractal dimension of seismicity. Geophys. Res. Lett. 28 (2001).
48. Caruso, F., Vinciguerra, S., Latora, V., Rapisarda, A. & Malone, S. Multifractal analysis of mount St. Helens seismicity as a tool for
identifying eruptive activity. Fractals 14, 179–186 (2006).
49. Maryanto, S., Santosa, R. D. R., Mulyana, I. & Hendrasto, M. Fractal and chaos properties of explosion earthquakes followed by
harmonic tremor at Semeru Volcano, East Java, Indonesia. Int. J. Sci. Eng. Res. 2, 15–21 (2011).
50. López, C., Martí, J., Abella, R. & Tarraga, M. Applying fractal dimensions and energy-budget analysis to characterize fracturing processes during magma migration and eruption: 2011-2012 El Hierro (Canary Islands) submarine eruption. Surv. Geophys. 35, 1023–1044 (2014).
51. López, C., García-Cañada, L., Martí, J. & Cerdeña, I. D. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption. J. Geodynamics 104, 1–14 (2016).
52. Allen, R. Automatic phase pickers: Their present use and future prospects. BSSA 72, S225–S242 (1982).
53. Esposito, A. M. et al. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps.
BSSA 98, 2449–2459 (2008).
54. Esposito, A. M., D’Auria, L., Giudicepietro, F., Peluso, R. & Martini, M. Automatic recognition of landslides based on neural network
analysis of seismic signals: An application to the monitoring of Stromboli Volcano (Southern Italy). Pure Appl. Geophys. 170,
1821–1832 (2013).
55. Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L. & Kohler, W. Earthworm: A flexible approach to seismic network processing,.
IRIS Newsletter 14, 1–4. http://www.iris.iris.edu/newsletter/FallNewsletter/earthworm.html. Last accessed 8 April 2020 (1995).
56. Bertagnini, A., Di Roberto, A. & Pompilio, M. Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcanol. 73, 1229–1243
(2011).
57. Bertagnini, A., Métrich, N., Landi, P. & Rosi, M. Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-
feeding system of a steady state basaltic volcano. J. Geophys. Res. 108, 2336 (2003).
58. Métrich, N., Bertagnini, A., Landi, P., Rosi, M. & Belhadj, O. Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian
Archipelago, Italy): the 5 April, 2003 eruption. Geophys. Res. Lett. 32 (2005).
59. Landi, P. et al. The December 2002-July 2003 effusive event at Stromboli volcano, Italy: Insights into the shallow plumbing system by
petrochemical studies. J. Volcanol. Geotherm. Res. 155, 263–284 (2006).
60. Bonaccorso, A. et al. Stromboli 2007 eruption: Deflation modeling to infer shallow-intermediate plumbing system. Geophys. Res.
Lett. 35 (2008).
61. Mattia, M., Rossi, M., Guglielmino, F., Aloisi, M. & Bock, Y. The shallow plumbing system of Stromboli Island as imaged from 1 Hz
instantaneous GPS positions. Geophys. Res. Lett. 31, L24610 (2004).
62. Del Bello, E., Llewellin, E. W., Taddeucci, J., Scarlato, P. & Lane, S. J. An analytical model for gas overpressure in slug-driven
explosions: Insights into Strombolian volcanic eruptions. J. Geophys. Res. 117 (2012).
63. Di Traglia, F. et al. The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and
intensity of persistent volcanic activity. Bull. Volcanol. 76, 786 (2014).
64. Gaudin, D. et al. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli
Volcano (Italy). Bull. Volcanol. 79, 1–15 (2017).
65. Orazi, M., Martini, M. & Peluso, R. Data acquisition for volcano monitoring. Eos Trans. Am. Geophys. Union 87, 385–392 (2006).
66. Salvaterra, L., Pintore, S. & Badiali, L. Rete sismologica basata su stazioni GAIA. Rapporti Tecnici 68, Istituto Nazionale di Geofisica
e Vulcanologia, Rome, Italy (2008).
67. Giudicepietro, F., Orazi, M. & Peluso, R. Test della nuova versione del datalogger GILDA: applicazione alla caratterizzazione del
rumore sismico registrato in prossimità delle fumarole del Vulcano Solfatara nella caldera dei Campi Flegrei. Rapporti Tecnici 322,
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy (2008).
68. Peluso, R. et al. High-availability techniques for seismic data acquisition using GNU/Linux: an application to the Stromboli seismic
network. Quaderni di Geofisica 74, Istituto Nazionale di Geofisica e Vulcanilogia, Rome (2009).
69. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D Nonlinear Phenom. 31, 277–283 (1988).
70. Endo, E. T. & Murray, T. Real-time Seismic Amplitude Measurement (RSAM): a volcano monitoring and prediction tool. Bull.
Volcanol. 53, 533–545 (1991).
2. Calvari, S. et al. Major eruptive style changes induced by structural modifications of a shallow conduit system: the 2007-2012
Stromboli case. Bull. Volcanol. 76, 841 (2014).
3. Tioukov, V. et al. First muography of Stromboli volcano. Sci. Rep. 9, 6695 (2019).
4. Falsaperla, S. & Spampinato, S. Seismic insight into explosive paroxysms at Stromboli volcano, Italy. J. Volcanol. Geotherm. Res. 125,
137–150 (2003).
5. Calvari, S. et al. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multiparametric characterization of the event and
quantification of the ejecta. J. Geophys. Res. 117, B05201 (2012).
6. Barberi, F., Rosi, M. & Sodi, A. Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol. 3, 173–187
(1993).
7. Rosi, M. et al. Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. In Lucchi, F., Peccerillo, A., Keller, J.,
Tranne, C. A. & Rossi, P. L. (eds.) The Aeolian Islands Volcanoes, vol. 37, chap. 14, 473–490 (Geological Society, London, 2013).
8. D’Auria, L., Giudicepietro, F., Martini, M. & Peluso, R. Seismological insight into the kinematics of the 5 April 2003 vulcanian
explosion at Stromboli volcano (southern Italy). Geophys. Res. Lett. 33, L08308 (2006).
9. Pistolesi, M. et al. The paroxysmal event and its deposits. In Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M. & Rosi, M. (eds.) The Stromboli Volcano: An integrated study of the 2002-2003 eruption, no. 182 in Geophysical Monograph Series, 317–329 (AGU, 2008).
10. Pistolesi, M., Delle Donne, D., Pioli, L., Rosi, M. & Ripepe, M. The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J. Geophys. Res. 116, B12206 (2011).
11. Calvari, S., Spampinato, L. & Lodato, L. The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data. J. Volcanol. Geotherm. Res. 149, 160–175 (2006).
12. Pino, N. A., Moretti, R., Allard, P. & Boschi, E. Seismic precursors of a basaltic paroxysmal explosion track deep gas accumulation and slug upraise. J. Geophys. Res. 116, B02312 (2011).
13. Bonaccorso, A., Calvari, S., Linde, A., Sacks, S. & Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March, 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 357–358, 249–256 (2012).
14. Burton, M. R., Caltabiano, T., Murè, F., Salerno, G. & Randazzo, D. SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220 (2009).
15. Delle Donne, D. et al. Exploring the explosive-effusive transition using permanent ultraviolet cameras. J. Geophys. Res. Solid Earth 122, 4377–4394 (2017).
16. Tibaldi, A. Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull. Volcanol. 63, 112–125 (2001).
17. Bonaccorso, A., Calvari, S., Garfì, G., Lodato, L. & Patanè, D. Dynamics of the December 2002 flank failure and tsunami at Stromboli
volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 30, 1941 (2003).
18. Pino, N. A., Ripepe, M. & Cimini, G. B. The Stromboli Volcano landslides of December 2002: A seismological description. Geophys.
Res. Lett. 31, L02605 (2004).
19. Tinti, S., Pagnoni, G. & Zaniboni, F. The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through
numerical simulations. Bull. Volcanol. 68, 462–479 (2006).
20. Rosi, M. et al. A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet. Sci.
Lett. 243, 594–606 (2006).
21. Aiuppa, A. et al. Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37 (2010).
22. Calvari, S. et al. Lava effusion – A slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 301, 317–323 (2011).
23. Ripepe, M. et al. Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci. Rep. 7
(2017).
24. Martini, M. et al. Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano. Ann. Geophys-Italy 50,
775–788 (2007).
25. Ripepe, M., Delle Donne, D., Lacanna, G., Marchetti, E. & Ulivieri, G. The onset of the 2007 Stromboli effusive eruption recorded by
an integrated geophysical network. J. Volcanol. Geotherm. Res. 182, 131–1136 (2009).
26. Calvari, S. et al. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. 115,
B04201 (2010).
27. Rizzo, A. L. et al. The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil co2 flux and he/he ratio in thermal
waters. Geophys. Res. Lett. 42, 2235–2243 (2015).
28. Valade, S. et al. Tracking dynamics of magma migration in open-conduit systems. Bull. Volcanol. 78, 78 (2016).
29. Di Traglia, F. et al. The 2014 effusive eruption at Stromboli: New insights from in situ and remote-sensing measurements. Remote
Sens. 10, 1–21 (2018).
30. Giudicepietro, F. et al. Integration of ground-based remote-sensing and in situ multidisciplinary monitoring data to analyze the
eruptive activity of Stromboli volcano in 2017-2018. Remote Sens. 11, 1813 (2019).
31. Plank, S. et al. The July/August 2019 lava flows at the Sciara del Fuoco, Stromboli-Analysis from multi-sensor infrared satellite
imagery. Remote Sens. 11, 2879 (2019).
32. De Cesare, W. et al. The broadband seismic network of Stromboli volcano, Italy. Seism. Res. Lett. 80, 435–439 (2009).
33. Linde, A. T., Agustsson, K., Sacks, I. S. & Stefansson, R. Mechanism of the 1991 eruption of Hekla from continuous borehole strain
monitoring. Nature 365, 737–740 (1993).
34. Chouet, B. et al. Source and path effects in the wavefields of tremor and explosions at Stromboli Volcano, Italy. J. Geophys. Res. 102,
15129–15150 (1997).
35. Chouet, B. et al. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversion of very-
long period data. J. Geophys. Res. 108, 1–25 (2003).
36. Giudicepietro, F. et al. Changes in the VLP seismic source during the 2007 Stromboli eruption. J. Volcanol. Geotherm. Res. 182,
162–171 (2009).
37. Neuberg, J., Luckett, R., Ripepe, M. & Braun, T. Highlights from a seismic broadband array on Stromboli volcano. Geophys. Res. Lett.
21, 749–752 (1994).
38. Ripepe, M., Ciliberto, S. & Della Schiava, M. Time contrains for modeling source dynamics of volcano explosions at Stromboli. J.
Geophys. Res. 106, 8713–8727 (2001).
39. Ripepe, M. & Gordeev, E. Gas bubble dynamics model for shallow volcanic tremor at. Stromboli. J. Geophys. Res. Solid Earth 104(10),
639–10,654 (1999).
40. Esposito, A. M. et al. Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli
Volcano using neural networks. BSSA 96, 1230–1240 (2006).
41. Esposito, A. M., D’Auria, L., Giudicepietro, F. & Martini, M. Waveform variation of the explosion-quakes as a function of the
eruptive activity at Stromboli volcano. In Apolloni, B., Bassis, S., Esposito, A. & F., M. (eds.) Neural Nets and Surroundings. Smart
Innovation, Systems and Technologies, vol. 19, 111–119 (Springer, Berlin, Heidelberg, 2013).
42. Di Traglia, F., Battaglia, M., Nolesini, T., Lagomarsino, D. & Casagli, N. Shifts in the eruptive styles at Stromboli in 2010-2014
revealed by ground-based InSAR data. Sci. Rep. 5, 13569 (2015).
43. Borman, P. (ed.) New Manual of Seismological Observatory Practice (NMSOP-2 (IASPEI, GFZ Germany Research Centre for
Geosciences, Potsdam). http://nmsop.gfz-potsdam.de, 2012.
44. Krischer, L. et al. Obspy: a bridge for seismology into the scientific python ecosystem. Comput. Sci. Discov. 8, 014003 (2015).
45. Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models: Introduction of a
Metropolis-Gibbs method and comparison with linear locations. In Thurber, C. H. & Rabinowitz, N. (eds.) Advances in seismic
event location, chap. 5, 101–134 (Kluver Academic Publishers, Amsterdam, 2000).
46. Luongo, G., Mazzarella, A. & Palumbo, A. A fractal approach to clustering of the 1983-1984 seismicity in the Campi Flegrei Caldera,
southern Italy. Fractals 9 (1996).
47. Vinciguerra, S., Gresta, S., Barbano, M. S. & Distefano, G. The two behaviours of Mt. Etna Volcano before and after a large intrusive
episode: evidences from b value and fractal dimension of seismicity. Geophys. Res. Lett. 28 (2001).
48. Caruso, F., Vinciguerra, S., Latora, V., Rapisarda, A. & Malone, S. Multifractal analysis of mount St. Helens seismicity as a tool for
identifying eruptive activity. Fractals 14, 179–186 (2006).
49. Maryanto, S., Santosa, R. D. R., Mulyana, I. & Hendrasto, M. Fractal and chaos properties of explosion earthquakes followed by
harmonic tremor at Semeru Volcano, East Java, Indonesia. Int. J. Sci. Eng. Res. 2, 15–21 (2011).
50. López, C., Martí, J., Abella, R. & Tarraga, M. Applying fractal dimensions and energy-budget analysis to characterize fracturing processes during magma migration and eruption: 2011-2012 El Hierro (Canary Islands) submarine eruption. Surv. Geophys. 35, 1023–1044 (2014).
51. López, C., García-Cañada, L., Martí, J. & Cerdeña, I. D. Early signs of geodynamic activity before the 2011-2012 El Hierro eruption. J. Geodynamics 104, 1–14 (2016).
52. Allen, R. Automatic phase pickers: Their present use and future prospects. BSSA 72, S225–S242 (1982).
53. Esposito, A. M. et al. Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps.
BSSA 98, 2449–2459 (2008).
54. Esposito, A. M., D’Auria, L., Giudicepietro, F., Peluso, R. & Martini, M. Automatic recognition of landslides based on neural network
analysis of seismic signals: An application to the monitoring of Stromboli Volcano (Southern Italy). Pure Appl. Geophys. 170,
1821–1832 (2013).
55. Johnson, C. E., Bittenbinder, A., Bogaert, B., Dietz, L. & Kohler, W. Earthworm: A flexible approach to seismic network processing,.
IRIS Newsletter 14, 1–4. http://www.iris.iris.edu/newsletter/FallNewsletter/earthworm.html. Last accessed 8 April 2020 (1995).
56. Bertagnini, A., Di Roberto, A. & Pompilio, M. Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcanol. 73, 1229–1243
(2011).
57. Bertagnini, A., Métrich, N., Landi, P. & Rosi, M. Stromboli volcano (Aeolian Archipelago, Italy): An open window on the deep-
feeding system of a steady state basaltic volcano. J. Geophys. Res. 108, 2336 (2003).
58. Métrich, N., Bertagnini, A., Landi, P., Rosi, M. & Belhadj, O. Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian
Archipelago, Italy): the 5 April, 2003 eruption. Geophys. Res. Lett. 32 (2005).
59. Landi, P. et al. The December 2002-July 2003 effusive event at Stromboli volcano, Italy: Insights into the shallow plumbing system by
petrochemical studies. J. Volcanol. Geotherm. Res. 155, 263–284 (2006).
60. Bonaccorso, A. et al. Stromboli 2007 eruption: Deflation modeling to infer shallow-intermediate plumbing system. Geophys. Res.
Lett. 35 (2008).
61. Mattia, M., Rossi, M., Guglielmino, F., Aloisi, M. & Bock, Y. The shallow plumbing system of Stromboli Island as imaged from 1 Hz
instantaneous GPS positions. Geophys. Res. Lett. 31, L24610 (2004).
62. Del Bello, E., Llewellin, E. W., Taddeucci, J., Scarlato, P. & Lane, S. J. An analytical model for gas overpressure in slug-driven
explosions: Insights into Strombolian volcanic eruptions. J. Geophys. Res. 117 (2012).
63. Di Traglia, F. et al. The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and
intensity of persistent volcanic activity. Bull. Volcanol. 76, 786 (2014).
64. Gaudin, D. et al. Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example of Stromboli
Volcano (Italy). Bull. Volcanol. 79, 1–15 (2017).
65. Orazi, M., Martini, M. & Peluso, R. Data acquisition for volcano monitoring. Eos Trans. Am. Geophys. Union 87, 385–392 (2006).
66. Salvaterra, L., Pintore, S. & Badiali, L. Rete sismologica basata su stazioni GAIA. Rapporti Tecnici 68, Istituto Nazionale di Geofisica
e Vulcanologia, Rome, Italy (2008).
67. Giudicepietro, F., Orazi, M. & Peluso, R. Test della nuova versione del datalogger GILDA: applicazione alla caratterizzazione del
rumore sismico registrato in prossimità delle fumarole del Vulcano Solfatara nella caldera dei Campi Flegrei. Rapporti Tecnici 322,
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy (2008).
68. Peluso, R. et al. High-availability techniques for seismic data acquisition using GNU/Linux: an application to the Stromboli seismic
network. Quaderni di Geofisica 74, Istituto Nazionale di Geofisica e Vulcanilogia, Rome (2009).
69. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D Nonlinear Phenom. 31, 277–283 (1988).
70. Endo, E. T. & Murray, T. Real-time Seismic Amplitude Measurement (RSAM): a volcano monitoring and prediction tool. Bull.
Volcanol. 53, 533–545 (1991).
Type
article
File(s)
Loading...
Name
Giudicepietro et al 2020-Stromboli 2019 precursors.pdf
Description
main text
Size
5.22 MB
Format
Adobe PDF
Checksum (MD5)
acc5d52a01af2eb40f7c7ff91912af5a