Options
Eruptive versus non-eruptive behaviour of large calderas: the example of Campi Flegrei caldera (southern Italy)
Language
English
Obiettivo Specifico
3.6. Fisica del vulcanismo
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
7/72 (2010)
Publisher
Springer-Verlag
Pages (printed)
871-886
Issued date
2010
Abstract
Caldera eruptions are among the most hazardous
of natural phenomena. Many calderas around the world are
active and are characterised by recurrent uplift and
subsidence periods due to the dynamics of their magma
reservoirs. These periods of unrest are, in some cases,
accompanied by eruptions. At Campi Flegrei caldera (CFc),
which is an area characterised by very high volcanic risk,
the recurrence of this behaviour has stimulated the study of
the rock rheology around the magma chamber, in order to
estimate the likelihood of an eruption. This study considers
different scenarios of shallow crustal behaviour, taking into
account the earlier models of CFc ground deformation and
caldera eruptions, and including recent geophysical investigations
of the area. A semi-quantitative evaluation of the
different factors that lead to magma storage or to its
eruption (such as magma chamber size, wall-rock viscosity,
temperature, and regional tectonic strain rate) is reported
here for elastic and viscoelastic conditions. Considering the
large magmatic sources of the CFc ignimbrite eruptions
(400–2,000 km3) and a wall-rock viscosity between 1018
and 1020 Pa s, the conditions for eruptive failure are
difficult to attain. Smaller source dimensions (a few cubic
kilometres) promote the condition for fracture (eruption)
rather than for the flow of wall rock. We also analyse the
influence of the regional extensional stress regime on
magma storage and eruptions, and the thermal stress as a
possible source of caldera uplift. The present study also
emphasises the difficulty of distinguishing eruption and
non-eruption scenarios at CFc, since an unambiguous
model that accounts for the rock rheology, magma-source
dimensions and locations and regional stress field influences
is still lacking.
of natural phenomena. Many calderas around the world are
active and are characterised by recurrent uplift and
subsidence periods due to the dynamics of their magma
reservoirs. These periods of unrest are, in some cases,
accompanied by eruptions. At Campi Flegrei caldera (CFc),
which is an area characterised by very high volcanic risk,
the recurrence of this behaviour has stimulated the study of
the rock rheology around the magma chamber, in order to
estimate the likelihood of an eruption. This study considers
different scenarios of shallow crustal behaviour, taking into
account the earlier models of CFc ground deformation and
caldera eruptions, and including recent geophysical investigations
of the area. A semi-quantitative evaluation of the
different factors that lead to magma storage or to its
eruption (such as magma chamber size, wall-rock viscosity,
temperature, and regional tectonic strain rate) is reported
here for elastic and viscoelastic conditions. Considering the
large magmatic sources of the CFc ignimbrite eruptions
(400–2,000 km3) and a wall-rock viscosity between 1018
and 1020 Pa s, the conditions for eruptive failure are
difficult to attain. Smaller source dimensions (a few cubic
kilometres) promote the condition for fracture (eruption)
rather than for the flow of wall rock. We also analyse the
influence of the regional extensional stress regime on
magma storage and eruptions, and the thermal stress as a
possible source of caldera uplift. The present study also
emphasises the difficulty of distinguishing eruption and
non-eruption scenarios at CFc, since an unambiguous
model that accounts for the rock rheology, magma-source
dimensions and locations and regional stress field influences
is still lacking.
References
AGIP (1987) Geologia e geofisica del sistema geotermico dei Campi
Flegrei, Technical report. Settore Esplor e Ric Geoterm-Metodol
per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23
Amadei B, Stephansson O (1997) Rock stress and its measurement.
Chapman and Hall, London
Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion
of deformation and gravity changes in a horizontally layered halfspace:
Evidence for magma intrusion during the 1982–1984
unrest at Campi Flegrei caldera (Italy). Earth Planet Sci Lett.
doi:10.1016/j.epsl.2008.04.040
Aster RC, Meyer RP (1988) Three-dimensional velocity structure and
hypocenter distribution in the Campi Flegrei caldera, Italy.
Tectonophysics 149:195–218
Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean
Fields 1982–1984: Brief chronicle of a volcano emergency in a
densely populated area. Bull Volcanol 47:175–185
Battaglia M, Roberts C, Segall P (1999) Magma intrusion beneath
Long Valley caldera confirmed by temporal changes in gravity.
Science 285:2119–2122
Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006)
Evidence for fluid migration as the source of deformation at
Campi Flegrei caldera (Italy). Geophys Res Lett 33:01307.
doi:10.1029/2005GL024904
Bellucci, F, Woo J, Kilburn CRJ, Rolandi G (2006) Ground
deformation at Campi Flegrei, Italy: implications for hazard
assessment. In: Troise C, De Natale G, Kilburn CRJ (eds)
Mechanisms of activity and unrest at large calderas. Geol Soc
London Spec Pub 269:141–157
Berrino G (1994) Gravity changes induced by heightmass variations at
the Campi Flegrei caldera. J Volcanol Geotherm Res 61:293–309
Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation
and gravity changes accompanying the Pozzuoli uplift. Bull
Volcanol 47:187–200
Bianchi R, Coradini A et al (1987) Modelling of surface ground
deformation in volcanic areas: the 1970–1972 and 1982–1984
crises of Campi Flegrei, Italy. J Geophys Res 92:14139–14150
Billington EW, Tate A (1981) The physics of deformation and flow.
McGraw-Hill, New York
Bull Volcanol Bonafede M (1991) Hot fluid migration: an efficient source of ground
deformation; application to the 1982–1985 crisis at Campi
Flegrei—Italy. J Volcanol Geotherm Res 48:187–198
Bonafede M, Dragoni M, Quareni F (1986) Displacement and stress
field produced by a centre of dilation and by a pressure source in
a viscoelastic halfspace: Application to the study of ground
deformation and seismic activity at Campi Flegrei, Italy. Geophys
J R Astron Soc 87:455–485
Carter NL, Tsenn MC (1987) Flow properties of continental
lithosphere. Tectonophysics 136:27–63
Cioni R, Corazza E, Marini L (1984) The gas/steam ratio as indicator
of heat transfer at the Solfatara fumaroles, Phlegrean Fields
(Italy). Bull Volcanol 47:295–302
Crisp JA (1984) Rates of magma emplacement and volcanic output. J
Volcanol Geotherm Res 20:177–211
Cubellis E, Di Donna G, Luongo G, Mazzarella A (2002) Simulating
the mechanism of magmatic processes in the Campi Flegrei area
(southern Italy) by Lorenz equations. J Volcanol Geotherm Res
115:337–347
Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the
Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei
caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol
Geotherm Res 133:157–170
De Natale G, Pingue F (1993) Ground deformations in collapsed
caldera structures. J Volcanol Geotherm Res 57:19–38
De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and
geochemical modelling of the Campi Flegrei caldera. J Volcanol
Geotherm Res 48:199–222
De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical
model for ground movements at Campi Flegrei caldera. J
Geodynam 32:487–517
De Natale G, Troise C, Pingue F, Mstrolorenzo G, Pappalardo L,
Battaglia M, Boschi E (2006) The Campi Flegrei caldera: unrest
mechanisms and hazards. In: Troise C, De Natale G, Kilburn CRJ
(eds) Mechanisms of activity and unrest at large calderas. Geol
Soc London Spec Pub 269:25–45
De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ,
Belkin HE (2001) New constraints on the pyroclastic eruptive
history of the Campanian volcanic plain (Italy). Mineral Petrol
73:47–65. doi:10.1007/s007100170010
Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical
crustal movements in Campi Flegrei caldera, southern Italy. Geol
Soc Am Spec Pap 263:1–48
Ferrucci F, Hirn A, Virieux J, De Natale G, Mirabile L (1992) P-SV
conversions at a shallow boundary beneath Campi Flegrei caldera
(Naples, Italy): Evidence for the magma chamber. J Geophys Res
97:15351–15359
Folch A, Martí J (1998) The generation of overpressure in felsic
magma chambers by replenishment. Earth Planet Sci Lett
163:301–314
Gaeta FS, De Natale G et al (1998) Genesis and evolution of unrest
episodes at Campi Flegrei caldera: The role of thermal fluiddynamical
processes in the geothermal system. J Geophys Res
103:20921–20933
Gottsmann J, Rymer H, Berrino G (2006) Unrest at the Campi Flegrei
caldera (Italy): A critical evaluation of source parameters from
geodetic data inversion. J Volcanol Geotherm Res 150:132–145
Gudmundsson A, Brenner SL (2005) On the conditions of sheet
injections and eruptions in stratovolcanoes. Bull Volcanol
67:768–782
Haimson BC, Rummel F (1982) Hydrofracturing stress measurements in
the Iceland Research Drilling Project drill hole at Reydarfjordur,
Iceland. J Geophys Res 87:6631–6649
Hansen FD, Carter NL (1983) Semibrittle creep of dry and wet
westerly granite at 1,000 MPa. 24th US Symposium on Rock
Mechanics, Texas A&M, pp 429–447
Hill D (1992) Temperatures at the base of the seismogenetic crust
beneath Long Valley caldera, California, and Phlegrean Fields
caldera, Italy. In: Gasparini P, Scarpa R, Aki K (eds) Volcanic
Seismology. IAVCEI Proc Volcanology 3:432–461
Jaeger JC, Cook NGW (1969) Fundamentals of rocks mechanics.
Chapman and Hall, London
Jellinek MA, De Paolo DJ (2003) A model for the origin of large
silicic magma chambers, precursors of caldera forming eruptions.
Bull Volcanol 65:363–381
Johnson AM (1970) Physical processes in geology. Freeman Cooper
& Company, San Francisco
Judenherc S, Zollo A (2004) The Bay of Naples (southern Italy):
Constraints on the volcanic structures inferred from dense
seismic survey. J Geophys Res 109:B10312. doi:10.1029/
2003JB002876
Lima A, De Vivo B, Spera FJ, Bodnar RJ, Milia A, Nunziata C,
Belkin HE, Cannatelli C (2009) Thermodynamic model for uplift
and deflation (bradyseism) associated with magmatichydrothermal
activity at Campi Flegrei (Italy). Earth Sci Rev
97:44–58
Lirer L, Rolandi G, Di Vito MA, Mastrolorenzo G (1987) L’eruzione
del Monte Nuovo (1538) nei Campi Flegrei. Boll Soc Geol It
106:447–460
Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G,
Papale P (2008) The deep magmatic system of the Campi
Flegrei caldera (Italy). Geophys Res Lett 35:L21304.
doi:10.1029/2008GL035550
Martì J, Folch A (2005) Anticipating volcanic eruptions. In: Martì J,
Ernst GG (eds) Volcanoes and environment. Cambridge Univ
Press, Cambridge, pp 90–120
McGarr (1976) Seismic moment and volume changes. J Geophys Res
81:1487–1494
McKee C et al (1995) The 1994 eruption at Rabaul volcano, Papua
New Guinea, Paper presented at the General Assembly, Int Union
Geod Geophys, Boulder CO
Mogi K (1958) Relations between the eruptions of various volcanoes
and the deformations of the ground surfaces around them. Bull
Earthquake Res Inst 36:99–134
Morhange C, Bourciern M, Laborel J, Gialannella C, Goiran JP,
Crimaco L, Vecchi L (1999) New data on historical relative sea
level movements in Pozzuoli Phlaegrean Fields, southern Italy.
Physics Chem Earth A24:349–354
Morhange C, Marriner N, Laborel J, Todesco M, Oberlin C (2006)
Rapid sea-level movements and noneruptive crustal deformations
in the Phlaegrean Fields caldera, Italy. Geology 34:93–96
Nicolosi I, Speranza F, Chiappini M (2006) Ultrafast oceanic
spreading of the Marsili Basin, southern Tyrrhenian Sea:
Evidence from magmatic anomaly analysis. Geology 34:717–720
Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan
Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption:
Eruptive dynamics, magma withdrawal and caldera collapse. J
Volcanol Geotherm Res 53:275–287
Orsi G, Di Vito M, de Vita S (1996) The restless, resurgent Campi
Flegrei nested caldera (Italy): Constraints on its evolution and
configuration. J Volcanol Geotherm Res 74:179–214
Orsi G, Civetta L, Del Gaudio S, de Vita S, Di Vito MA, Isaia R,
Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short-term round
deformations and seismicity in the resurgent Campi Flegrei
caldera (Italy): An example of active block-resurgence in a
densely populated area. J Volcanol Geotherm Res 91:415–451
Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and
deformation rates along the active normal fault system in the
southern Apennines: Implications for fault growth. J Struct Geol
29:166–188
Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002)
Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope
data. J Petrol 43:1415–1434
Parascandola A (1947) I fenomeni bradisismici del Serapeo di
Pozzuoli. Naples, privately published, 156 pp
Pinel V, Jaupart C (2003) Magma chamber behaviour beneath a volcanic
edifice. J Geophys Res 108:2072. doi:10.1029/2002JB001751
Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and
eruptive processes from textural and compositional features of
Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull
Volcanol 67:663–678
Presti D, Troise C, De Natale G (2004) Probabilistic location of
seismic sequences in heterogeneous media. B-11 Seismol Soc
Am 94:2239–2253
Quareni F (1990) Finite element deformation of an elastic, nonuniform
medium produced by a dilating or pressurised magma
chamber. Geophys J Int 101:243–249
Rabaute A, Yven B, CheliniW, ZamoraM(2003) Subsurface geophysics
of Phlegrean Fields: New insights from downhole measurements. J
Geophys Res 108:2171. doi:10.1029/20015B001436
Rayleigh L (1916) On convection currents in a horizontal layer of
fluid when the higher temperature is on the other side. Philos
Mag 32:529–543
Roberts GP (2006) Multi-seismic cycle velocity and strain fields for
an active normal fault system, central Italy. Earth Planet Sci Lett
251:44–51
Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003)
Tectonic controls on the genesis of ignimbrites from the Campanian
Volcanic Zone, southern Italy. Mineral Petrol 79:3–31
Rosi M, Sbrana A (1987) Phlegrean fields. Rosi M, Sbrana A (eds)
(1987) Phlegrean fields. Consig Naz Ric, Quadermi de la Ricerra
Scientifica 114:1–175
Saccorotti G, Petrosino S, Bianco F, Castellano M, Galluzzo D, La
Rocca M, Del Pezzo E, Maccarelli L, Cusano P (2007)
Seismicity associated with the 2004–2006 renewed ground uplift
at Campi Flegrei Caldera, Italy. Phys Earth Planet Int 165:14–24
Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma
ascent and the style of volcanic eruptions. Earth Planet Sci Lett
253:513–529
Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec
Pap180:1–27
Spera FJ (2000) Physical properties of magma. In: Sigurdsson H,
Houghton B, McNutts S, Rymer H, Stix J (eds) Encyclopedia of
volcanoes. Academic Press, San Diego, pp 171–190
Trasatti E, Giunchi C, Bonafede M (2005) Structural and rheological
constraints on source depth and overpressure estimates at Campi
Flegrei caldera, Italy. J Volcanol Geotherm Res 144:105–118
Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro
U, Boschi E (2007) Renewed ground uplift at Campi Flegrei
caldera (Italy): New insight on magmatic processes and forecast.
Geophys Res Lett 34:L03301. doi:10.1029/2006GL028545
Turcotte DL, Schubert TG (2001) Geodynamics. Cambridge University
Press, New York
Vanorio T, Virieux J, Capuano P, Russo G (2005) Three-dimensional
seismic tomography from P wave and S wave microearthquake
travel times and rock physics characterisation of the Campi
Flegrei caldera. J Geophys Res 110:B03201. doi:10.1029/
2004JB003102
Vinciguerra S, Trovato C, Meredith PG, Bensos PM, Troise C, De
Natale G (2006) Understanding the seismic velocity structure of
Campi Flegrei caldera (Italy): From the laboratory to the field
scale. Pure Appl Geophys 163:2205–2221
West M, Menke W, Tolstoy M, Webb S, Sohn R (2001) Magma
storage beneath Axial volcano on the Juan de Fuca mid-ocean
ridge. Nature 413:833–836
Wohlenberg J (1982) Density of rocks. In: Angenheister G (ed)
Landolt-Bornstein, numerical data and functional relationships in
science and technology. New series, group V, volume 1a,
physical properties of rocks. Springer-Verlag, Berlin, pp 113–119
Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the
Phlegreaean magmatic system. J Volcanol Geotherm Res 91:381–
414
Yokoyama I, Nazzaro A (2002) Anomalous crustal movements with
low seismic efficiency—Campi Flegrei, Italy and some examples
in Japan. Annal Geophys 45:709–722
Zamora M, Sartoris G, Chelini W (1994) Laboratory measurements of
ultrasonic wave velocities in rocks from the Campi Flegrei
volcanic system and their relation to other field data. J Geophys
Res 99:13553–13561
Zollo A, Gasparini P, Virieux J, le Meur H, De Natale G, Biella G,
Boschi E, Captano P, de Franco R, dell’Aversana P, de Matteis R,
Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic
evidence for a low-velocity zone in the upper crust beneath
Mount Vesuvius. Science 274:592–594
Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P,
Chiarabba C, de Franco R, Makris J, Nichelini A, Musacchio G
(2003) Evidence for the buried rim of Campi Flegrei caldera from
3-D active seismic imaging. Geophys Res Lett 30:2002.
doi:10.1029/2003GL018173
Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J,
Gasparini P (2008) Seismic reflections reveal a massive melt
layer feeling Campi Flegrei caldera. Geophys Res Lett 35:
L12306. doi:10.1029/2008GL034242
Flegrei, Technical report. Settore Esplor e Ric Geoterm-Metodol
per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23
Amadei B, Stephansson O (1997) Rock stress and its measurement.
Chapman and Hall, London
Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion
of deformation and gravity changes in a horizontally layered halfspace:
Evidence for magma intrusion during the 1982–1984
unrest at Campi Flegrei caldera (Italy). Earth Planet Sci Lett.
doi:10.1016/j.epsl.2008.04.040
Aster RC, Meyer RP (1988) Three-dimensional velocity structure and
hypocenter distribution in the Campi Flegrei caldera, Italy.
Tectonophysics 149:195–218
Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean
Fields 1982–1984: Brief chronicle of a volcano emergency in a
densely populated area. Bull Volcanol 47:175–185
Battaglia M, Roberts C, Segall P (1999) Magma intrusion beneath
Long Valley caldera confirmed by temporal changes in gravity.
Science 285:2119–2122
Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006)
Evidence for fluid migration as the source of deformation at
Campi Flegrei caldera (Italy). Geophys Res Lett 33:01307.
doi:10.1029/2005GL024904
Bellucci, F, Woo J, Kilburn CRJ, Rolandi G (2006) Ground
deformation at Campi Flegrei, Italy: implications for hazard
assessment. In: Troise C, De Natale G, Kilburn CRJ (eds)
Mechanisms of activity and unrest at large calderas. Geol Soc
London Spec Pub 269:141–157
Berrino G (1994) Gravity changes induced by heightmass variations at
the Campi Flegrei caldera. J Volcanol Geotherm Res 61:293–309
Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation
and gravity changes accompanying the Pozzuoli uplift. Bull
Volcanol 47:187–200
Bianchi R, Coradini A et al (1987) Modelling of surface ground
deformation in volcanic areas: the 1970–1972 and 1982–1984
crises of Campi Flegrei, Italy. J Geophys Res 92:14139–14150
Billington EW, Tate A (1981) The physics of deformation and flow.
McGraw-Hill, New York
Bull Volcanol Bonafede M (1991) Hot fluid migration: an efficient source of ground
deformation; application to the 1982–1985 crisis at Campi
Flegrei—Italy. J Volcanol Geotherm Res 48:187–198
Bonafede M, Dragoni M, Quareni F (1986) Displacement and stress
field produced by a centre of dilation and by a pressure source in
a viscoelastic halfspace: Application to the study of ground
deformation and seismic activity at Campi Flegrei, Italy. Geophys
J R Astron Soc 87:455–485
Carter NL, Tsenn MC (1987) Flow properties of continental
lithosphere. Tectonophysics 136:27–63
Cioni R, Corazza E, Marini L (1984) The gas/steam ratio as indicator
of heat transfer at the Solfatara fumaroles, Phlegrean Fields
(Italy). Bull Volcanol 47:295–302
Crisp JA (1984) Rates of magma emplacement and volcanic output. J
Volcanol Geotherm Res 20:177–211
Cubellis E, Di Donna G, Luongo G, Mazzarella A (2002) Simulating
the mechanism of magmatic processes in the Campi Flegrei area
(southern Italy) by Lorenz equations. J Volcanol Geotherm Res
115:337–347
Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the
Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei
caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol
Geotherm Res 133:157–170
De Natale G, Pingue F (1993) Ground deformations in collapsed
caldera structures. J Volcanol Geotherm Res 57:19–38
De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and
geochemical modelling of the Campi Flegrei caldera. J Volcanol
Geotherm Res 48:199–222
De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical
model for ground movements at Campi Flegrei caldera. J
Geodynam 32:487–517
De Natale G, Troise C, Pingue F, Mstrolorenzo G, Pappalardo L,
Battaglia M, Boschi E (2006) The Campi Flegrei caldera: unrest
mechanisms and hazards. In: Troise C, De Natale G, Kilburn CRJ
(eds) Mechanisms of activity and unrest at large calderas. Geol
Soc London Spec Pub 269:25–45
De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ,
Belkin HE (2001) New constraints on the pyroclastic eruptive
history of the Campanian volcanic plain (Italy). Mineral Petrol
73:47–65. doi:10.1007/s007100170010
Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical
crustal movements in Campi Flegrei caldera, southern Italy. Geol
Soc Am Spec Pap 263:1–48
Ferrucci F, Hirn A, Virieux J, De Natale G, Mirabile L (1992) P-SV
conversions at a shallow boundary beneath Campi Flegrei caldera
(Naples, Italy): Evidence for the magma chamber. J Geophys Res
97:15351–15359
Folch A, Martí J (1998) The generation of overpressure in felsic
magma chambers by replenishment. Earth Planet Sci Lett
163:301–314
Gaeta FS, De Natale G et al (1998) Genesis and evolution of unrest
episodes at Campi Flegrei caldera: The role of thermal fluiddynamical
processes in the geothermal system. J Geophys Res
103:20921–20933
Gottsmann J, Rymer H, Berrino G (2006) Unrest at the Campi Flegrei
caldera (Italy): A critical evaluation of source parameters from
geodetic data inversion. J Volcanol Geotherm Res 150:132–145
Gudmundsson A, Brenner SL (2005) On the conditions of sheet
injections and eruptions in stratovolcanoes. Bull Volcanol
67:768–782
Haimson BC, Rummel F (1982) Hydrofracturing stress measurements in
the Iceland Research Drilling Project drill hole at Reydarfjordur,
Iceland. J Geophys Res 87:6631–6649
Hansen FD, Carter NL (1983) Semibrittle creep of dry and wet
westerly granite at 1,000 MPa. 24th US Symposium on Rock
Mechanics, Texas A&M, pp 429–447
Hill D (1992) Temperatures at the base of the seismogenetic crust
beneath Long Valley caldera, California, and Phlegrean Fields
caldera, Italy. In: Gasparini P, Scarpa R, Aki K (eds) Volcanic
Seismology. IAVCEI Proc Volcanology 3:432–461
Jaeger JC, Cook NGW (1969) Fundamentals of rocks mechanics.
Chapman and Hall, London
Jellinek MA, De Paolo DJ (2003) A model for the origin of large
silicic magma chambers, precursors of caldera forming eruptions.
Bull Volcanol 65:363–381
Johnson AM (1970) Physical processes in geology. Freeman Cooper
& Company, San Francisco
Judenherc S, Zollo A (2004) The Bay of Naples (southern Italy):
Constraints on the volcanic structures inferred from dense
seismic survey. J Geophys Res 109:B10312. doi:10.1029/
2003JB002876
Lima A, De Vivo B, Spera FJ, Bodnar RJ, Milia A, Nunziata C,
Belkin HE, Cannatelli C (2009) Thermodynamic model for uplift
and deflation (bradyseism) associated with magmatichydrothermal
activity at Campi Flegrei (Italy). Earth Sci Rev
97:44–58
Lirer L, Rolandi G, Di Vito MA, Mastrolorenzo G (1987) L’eruzione
del Monte Nuovo (1538) nei Campi Flegrei. Boll Soc Geol It
106:447–460
Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G,
Papale P (2008) The deep magmatic system of the Campi
Flegrei caldera (Italy). Geophys Res Lett 35:L21304.
doi:10.1029/2008GL035550
Martì J, Folch A (2005) Anticipating volcanic eruptions. In: Martì J,
Ernst GG (eds) Volcanoes and environment. Cambridge Univ
Press, Cambridge, pp 90–120
McGarr (1976) Seismic moment and volume changes. J Geophys Res
81:1487–1494
McKee C et al (1995) The 1994 eruption at Rabaul volcano, Papua
New Guinea, Paper presented at the General Assembly, Int Union
Geod Geophys, Boulder CO
Mogi K (1958) Relations between the eruptions of various volcanoes
and the deformations of the ground surfaces around them. Bull
Earthquake Res Inst 36:99–134
Morhange C, Bourciern M, Laborel J, Gialannella C, Goiran JP,
Crimaco L, Vecchi L (1999) New data on historical relative sea
level movements in Pozzuoli Phlaegrean Fields, southern Italy.
Physics Chem Earth A24:349–354
Morhange C, Marriner N, Laborel J, Todesco M, Oberlin C (2006)
Rapid sea-level movements and noneruptive crustal deformations
in the Phlaegrean Fields caldera, Italy. Geology 34:93–96
Nicolosi I, Speranza F, Chiappini M (2006) Ultrafast oceanic
spreading of the Marsili Basin, southern Tyrrhenian Sea:
Evidence from magmatic anomaly analysis. Geology 34:717–720
Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan
Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption:
Eruptive dynamics, magma withdrawal and caldera collapse. J
Volcanol Geotherm Res 53:275–287
Orsi G, Di Vito M, de Vita S (1996) The restless, resurgent Campi
Flegrei nested caldera (Italy): Constraints on its evolution and
configuration. J Volcanol Geotherm Res 74:179–214
Orsi G, Civetta L, Del Gaudio S, de Vita S, Di Vito MA, Isaia R,
Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short-term round
deformations and seismicity in the resurgent Campi Flegrei
caldera (Italy): An example of active block-resurgence in a
densely populated area. J Volcanol Geotherm Res 91:415–451
Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and
deformation rates along the active normal fault system in the
southern Apennines: Implications for fault growth. J Struct Geol
29:166–188
Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002)
Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope
data. J Petrol 43:1415–1434
Parascandola A (1947) I fenomeni bradisismici del Serapeo di
Pozzuoli. Naples, privately published, 156 pp
Pinel V, Jaupart C (2003) Magma chamber behaviour beneath a volcanic
edifice. J Geophys Res 108:2072. doi:10.1029/2002JB001751
Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and
eruptive processes from textural and compositional features of
Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull
Volcanol 67:663–678
Presti D, Troise C, De Natale G (2004) Probabilistic location of
seismic sequences in heterogeneous media. B-11 Seismol Soc
Am 94:2239–2253
Quareni F (1990) Finite element deformation of an elastic, nonuniform
medium produced by a dilating or pressurised magma
chamber. Geophys J Int 101:243–249
Rabaute A, Yven B, CheliniW, ZamoraM(2003) Subsurface geophysics
of Phlegrean Fields: New insights from downhole measurements. J
Geophys Res 108:2171. doi:10.1029/20015B001436
Rayleigh L (1916) On convection currents in a horizontal layer of
fluid when the higher temperature is on the other side. Philos
Mag 32:529–543
Roberts GP (2006) Multi-seismic cycle velocity and strain fields for
an active normal fault system, central Italy. Earth Planet Sci Lett
251:44–51
Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003)
Tectonic controls on the genesis of ignimbrites from the Campanian
Volcanic Zone, southern Italy. Mineral Petrol 79:3–31
Rosi M, Sbrana A (1987) Phlegrean fields. Rosi M, Sbrana A (eds)
(1987) Phlegrean fields. Consig Naz Ric, Quadermi de la Ricerra
Scientifica 114:1–175
Saccorotti G, Petrosino S, Bianco F, Castellano M, Galluzzo D, La
Rocca M, Del Pezzo E, Maccarelli L, Cusano P (2007)
Seismicity associated with the 2004–2006 renewed ground uplift
at Campi Flegrei Caldera, Italy. Phys Earth Planet Int 165:14–24
Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma
ascent and the style of volcanic eruptions. Earth Planet Sci Lett
253:513–529
Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec
Pap180:1–27
Spera FJ (2000) Physical properties of magma. In: Sigurdsson H,
Houghton B, McNutts S, Rymer H, Stix J (eds) Encyclopedia of
volcanoes. Academic Press, San Diego, pp 171–190
Trasatti E, Giunchi C, Bonafede M (2005) Structural and rheological
constraints on source depth and overpressure estimates at Campi
Flegrei caldera, Italy. J Volcanol Geotherm Res 144:105–118
Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro
U, Boschi E (2007) Renewed ground uplift at Campi Flegrei
caldera (Italy): New insight on magmatic processes and forecast.
Geophys Res Lett 34:L03301. doi:10.1029/2006GL028545
Turcotte DL, Schubert TG (2001) Geodynamics. Cambridge University
Press, New York
Vanorio T, Virieux J, Capuano P, Russo G (2005) Three-dimensional
seismic tomography from P wave and S wave microearthquake
travel times and rock physics characterisation of the Campi
Flegrei caldera. J Geophys Res 110:B03201. doi:10.1029/
2004JB003102
Vinciguerra S, Trovato C, Meredith PG, Bensos PM, Troise C, De
Natale G (2006) Understanding the seismic velocity structure of
Campi Flegrei caldera (Italy): From the laboratory to the field
scale. Pure Appl Geophys 163:2205–2221
West M, Menke W, Tolstoy M, Webb S, Sohn R (2001) Magma
storage beneath Axial volcano on the Juan de Fuca mid-ocean
ridge. Nature 413:833–836
Wohlenberg J (1982) Density of rocks. In: Angenheister G (ed)
Landolt-Bornstein, numerical data and functional relationships in
science and technology. New series, group V, volume 1a,
physical properties of rocks. Springer-Verlag, Berlin, pp 113–119
Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the
Phlegreaean magmatic system. J Volcanol Geotherm Res 91:381–
414
Yokoyama I, Nazzaro A (2002) Anomalous crustal movements with
low seismic efficiency—Campi Flegrei, Italy and some examples
in Japan. Annal Geophys 45:709–722
Zamora M, Sartoris G, Chelini W (1994) Laboratory measurements of
ultrasonic wave velocities in rocks from the Campi Flegrei
volcanic system and their relation to other field data. J Geophys
Res 99:13553–13561
Zollo A, Gasparini P, Virieux J, le Meur H, De Natale G, Biella G,
Boschi E, Captano P, de Franco R, dell’Aversana P, de Matteis R,
Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic
evidence for a low-velocity zone in the upper crust beneath
Mount Vesuvius. Science 274:592–594
Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P,
Chiarabba C, de Franco R, Makris J, Nichelini A, Musacchio G
(2003) Evidence for the buried rim of Campi Flegrei caldera from
3-D active seismic imaging. Geophys Res Lett 30:2002.
doi:10.1029/2003GL018173
Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J,
Gasparini P (2008) Seismic reflections reveal a massive melt
layer feeling Campi Flegrei caldera. Geophys Res Lett 35:
L12306. doi:10.1029/2008GL034242
Type
article
File(s)
No Thumbnail Available
Name
Carlino_Somma_2010.pdf
Size
693.75 KB
Format
Adobe PDF
Checksum (MD5)
780cbf44548126274a47c233e3069bc9