Options
Radiometric age constraints for glacial terminations IX and VII
Author(s)
Language
English
Status
Submitted
Issued date
2006
Abstract
Buried sedimentary aggradational sections deposited between 800 ka and 600 ka in the
Tiber River coastal alluvial plain have been studied using borecores from around Rome. 40Ar/39Ar
ages on sanidine and/or leucite from intercalated tephra layers and paleomagnetic investigation of
clay sections provide geochronological constraints on the timing of aggradation of two of these
alluvial sections, and demonstrate that they were deposited in response to eustatic sea level rise
caused by glacial terminations IX and VII. 40Ar/39Ar age data indicate ages of 802 ± 8 ka and 649
± 3 ka for glacial terminations IX, and VII, respectively, providing a rare test, beyond the range
of U-series dating for corals and speleothems (~500 ka), of the astronomically calibrated
timescale developed for oxygen isotope records from deep sea cores.
Tiber River coastal alluvial plain have been studied using borecores from around Rome. 40Ar/39Ar
ages on sanidine and/or leucite from intercalated tephra layers and paleomagnetic investigation of
clay sections provide geochronological constraints on the timing of aggradation of two of these
alluvial sections, and demonstrate that they were deposited in response to eustatic sea level rise
caused by glacial terminations IX and VII. 40Ar/39Ar age data indicate ages of 802 ± 8 ka and 649
± 3 ka for glacial terminations IX, and VII, respectively, providing a rare test, beyond the range
of U-series dating for corals and speleothems (~500 ka), of the astronomically calibrated
timescale developed for oxygen isotope records from deep sea cores.
References
[1] D.B. Karner, P.R. Renne, 40Ar/39Ar geochronology of Roman province tephra in the Tiber
River Valley: age calibration of Middle Pleistocene sea-level changes, Geol. Soc. Am.
Bull. 110 (1998) 740-747.
[2] D.B. Karner, F. Marra, Correlation of fluviodeltaic aggradational sections with glacial
climate history: a revision of the classical Pleistocene stratigraphy of Rome, Geol. Soc.
Am. Bull. 110 (1998) 748-758.
[3] F. Marra, F. Florindo, D.B. Karner, Paleomagnetism and geochronology of early Middle
Pleistocene depositional sequences near Rome: comparison with the deep sea δ18O climate
record, Earth Planet. Sci. Lett. 159 (1998) 147-164.
[4] D.B. Karner, F. Marra, F. Florindo, E. Boschi, Pulsed uplift estimated from terrace
elevations in the coast of Rome: evidence for a new phase of volcanic activity? Earth
Planet. Sci. Lett. 188 (2001a) 135-148.
[5] F. Marra, C. Rosa, Stratigrafia e assetto geologico dell’area romana, in “La Geologia di
Roma. Il Centro Storico”, Mem. Descr. della Carta Geol. d’It. 50 (1995) 49-118.
[6] F. Florindo, F. Marra, A revision for the Middle Pleistocene continental deposits of Rome
(Central Italy): paleomagnetic data, Ann. Geofis. 38 (1995) 177-188.
[7] S. Milli, Depositional setting and high-frequency sequence stratigraphy of the middleupper
Pleistocene and Holocene deposits of the Roman basin. Geol. Rom., 33 (1997) 99-
136.
[8] G. Giordano, A. Esposito, D. De Rita, M. Fabbri, I. Mazzini, A. Trigari, C. Rosa, R.
Funiciello, The sedimentation along the Roman coast between middle and upper
Pleistocene: the interplay of eustatism, tectonics and volcanism - new data and review, Il
Quaternario, 16 (2003) 121-129.
[9] F. Marra, M.G. Carboni, L. De Bella, C. Faccenna, R. Funiciello, C. Rosa, Il substrato
Plio-Pleistocenico dell’area Romana, Boll. Soc. Geol. Ital. 114 (1995) 195-214.
23
[10] B.S. Singer, M.S. Pringle, Age and duration of the Matuyama-Brunhes geomagnetic
polarity reversal from 40Ar/39Ar incremental heating analyses of lavas, Earth Planet. Sci.
Lett. 139 (1996) 47-61.
[11] P.R. Renne, C.C. Swisher, A.L. Deino, D.B. Karner, T.L. Owens, and D.J. DePaolo,
Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem.
Geol. 145 (1998) 117-152.
[12] D.B. Karner, F. Marra, P. Renne, The history of the Monti Sabatini and Alban Hills
volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome, J. Volcanol.
Geotherm. Res. 107 (2001b) 185-219.
[13] N. Tetley, I. McDougall, H.R. Heydegger, Thermal neutron interferences in the 40Ar/39Ar
dating technique, J. Geophys. Res. 85 (1980) 7201-7205.
[14] P.R. Renne, K. Deckart, M. Ernesto, G. Féraud, E.M. Piccirillo, Age of the Ponta Grossa
dike swarm (Brazil) and implications for Paraná flood volcanism, Earth Planet. Sci. Lett.
144 (1996) 199-211.
[15] J.L. Kirschvink, The least-squares line and plane and the analysis of palaeomagnetic data,
Geophys. J.R. Astron. Soc. 62 (1980) 699-718.
[16] A.P. Roberts, Magnetic characteristics of sedimentary greigite (Fe3S4), Earth Planet. Sci.
Lett. 134 (1995) 227-236.
[17] M.J. Dekkers, Magnetic properties of natural pyrrhotite. II. High- and low-temperature
behaviour of Jrs and TRM as function of grain size, Phys. Earth Planet. Inter. 57 (1989)
266-283.
[18] I.F. Snowball, Gyroremanent magnetization (GRM) and the magnetic properties of greigite
bearing clays in southern Sweden, Geophys. J. Int. 129 (1997) 624-636.
[19] L. Sagnotti, A. Winkler, Rock magnetism and paleomagnetism of greigite-bearing
mudstones in the Italian peninsula, Earth Planet. Sci. Lett. 165 (1999) 67-90.
24
[20] A.P. Roberts, C.R. Pike, K.L. Verosub, FORC diagrams: a new tool for characterizing the
magnetic properties of natural samples, J. Geophys. Res. 105 (2000) 28,461-28,475.
[21] R. Raiswell, Pyrite texture, isotopic composition and the availability of iron, Am. J. Sci.
282 (1982) 1244-1263.
[22] A.P. Roberts, R. Weaver, Multiple mechanisms of remagnetization involving sedimentary
greigite (Fe3S4), Earth Planet. Sci. Lett. 231 (2005) 263-277.
[23] F. Florindo, L. Sagnotti, Paleomagnetism and rock magnetism in the upper Pliocene Valle
Ricca (Rome, Italy) section, Geophys. J. Int. 123 (1995) 340-354.
[24] W.T. Jiang, C.S. Horng, A.P. Roberts, D.R. Peacor, Contradictory magnetic polarities in
sediments and variable timing of neoformation of authigenic greigite, Earth Planet. Sci.
Lett. 193 (2001) 1-12.
[25] H. Oda, M. Torii, Sea-level change and remagnetization of continental shelf sediments off
New Jersey (ODP Leg 174A): magnetite and greigite diagenesis, Geophys. J. Int. 156
(2004) 443-458.
[26] C.J. Rowan, A.P. Roberts, Magnetite dissolution, diachronous greigite formation, and
secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in
Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett. 241 (2006) 119-137.
[27] D.B. Karner, J. Levine, B.P. Medeiros, R.A. Muller, Constructing a stacked benthic δ18O
record, Paleoceanography, 17 (2002) 10.1029/2001pa000667.
[28] V. Conato, D. Esu, A. Malatesta and F. Zarlenga, New data on the Pleistocene of Rome,
Quaternaria 22 (1980) 131-176.
[29] F. Bozzano, A. Andreucci, M. Gaeta, R. Salucci, A geological model of the buried Tiber
River valley beneath the historical centre of Rome, Bull. Ang. Geol. Env. 59 (2000) 1-21.
[30] G. Belluomini, P. Iuzzolini, L. Manfra, R. Mortari, M. Zalaffi, Evoluzione recente del delta
del Tevere, Geologica Romana 25 (1986) 213-234.
25
[31] K. Lambeck, F. Antonioli, A. Purcell, S. Silenzi, Sea-level change along the Italian coast
for the past 10.000 yr, Quaternary Science Reviews 23 (2004) 1567-1598.
[32] E. Bard, B. Hamelin, R. Fairbanks, U-Th ages obtained by mass spectrometry in corals
from Barbados: sea level during the past 130,000 years, Nature 346 (1990) 456-458.
[33] E. Bard, B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, F. Rougerie,
Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge,
Nature 382 (1996) 241-244.
[34] A.J. Ammerman, J. Miller, S. Ramsay, The mid-Holocene environment of the Velabrum in
Rome, Società Preistoria Protostoria Friuli-Venezia Giulia, Trieste, Quaderno 8 (2000) 9-
20.
[35] F.C. Bassinot, L.D. Labeyrie, E. Vincent, X. Quidelleur, N.J. Shackleton, Y. Lancelot, The
astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal,
Earth Planet. Sci. Lett. 126 (1994) 91-108.
[36] I.J. Winograd, T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J. Szabo, P.T.
Kolesar, K.M. Revesz, Continuous 500,000-year climate record from vein calcite in Devils
Hole, Nevada, Science 258 (1992) 255-260.
[37] K.R. Ludwig, K. R. Simmons, B. J. Szabo, I.J. Winograd, J.M. Landwehr, A.C., Riggs,
R.J. Hoffman, Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein,
Science 258 (1992) 284-287.
[38] D. B. Karner, F. Marra, 40Ar/39Ar dating of Glacial Termination V and the duration of
Marine Isotopic Stage 11: in: Earth’s Climate and Orbital Eccentricity: The Marine Isotope
Stage 11 Question, Geophysical Monograph 137 (2003) pp. 61-66, American Geophysical
Union, Washington, D.C.
[39] W.H. Berger, T. Bickert, H. Schmidt, T. Wefer, Quaternary oxygen isotope record of
pelagic foraminifers; Site 806, Ontong Java Plateau: Proc. ODP., Sci. Res. 130 (1992) 381-
395.
26
[40] W.H. Berger, T. Bickert, G. Wefer, M.I. Yasuda, Brunhes-Matuyama boundary; 790 k.y.
date consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch
template, Geophys. Res. Lett. 22 (1995) 1525-1528.
River Valley: age calibration of Middle Pleistocene sea-level changes, Geol. Soc. Am.
Bull. 110 (1998) 740-747.
[2] D.B. Karner, F. Marra, Correlation of fluviodeltaic aggradational sections with glacial
climate history: a revision of the classical Pleistocene stratigraphy of Rome, Geol. Soc.
Am. Bull. 110 (1998) 748-758.
[3] F. Marra, F. Florindo, D.B. Karner, Paleomagnetism and geochronology of early Middle
Pleistocene depositional sequences near Rome: comparison with the deep sea δ18O climate
record, Earth Planet. Sci. Lett. 159 (1998) 147-164.
[4] D.B. Karner, F. Marra, F. Florindo, E. Boschi, Pulsed uplift estimated from terrace
elevations in the coast of Rome: evidence for a new phase of volcanic activity? Earth
Planet. Sci. Lett. 188 (2001a) 135-148.
[5] F. Marra, C. Rosa, Stratigrafia e assetto geologico dell’area romana, in “La Geologia di
Roma. Il Centro Storico”, Mem. Descr. della Carta Geol. d’It. 50 (1995) 49-118.
[6] F. Florindo, F. Marra, A revision for the Middle Pleistocene continental deposits of Rome
(Central Italy): paleomagnetic data, Ann. Geofis. 38 (1995) 177-188.
[7] S. Milli, Depositional setting and high-frequency sequence stratigraphy of the middleupper
Pleistocene and Holocene deposits of the Roman basin. Geol. Rom., 33 (1997) 99-
136.
[8] G. Giordano, A. Esposito, D. De Rita, M. Fabbri, I. Mazzini, A. Trigari, C. Rosa, R.
Funiciello, The sedimentation along the Roman coast between middle and upper
Pleistocene: the interplay of eustatism, tectonics and volcanism - new data and review, Il
Quaternario, 16 (2003) 121-129.
[9] F. Marra, M.G. Carboni, L. De Bella, C. Faccenna, R. Funiciello, C. Rosa, Il substrato
Plio-Pleistocenico dell’area Romana, Boll. Soc. Geol. Ital. 114 (1995) 195-214.
23
[10] B.S. Singer, M.S. Pringle, Age and duration of the Matuyama-Brunhes geomagnetic
polarity reversal from 40Ar/39Ar incremental heating analyses of lavas, Earth Planet. Sci.
Lett. 139 (1996) 47-61.
[11] P.R. Renne, C.C. Swisher, A.L. Deino, D.B. Karner, T.L. Owens, and D.J. DePaolo,
Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating, Chem.
Geol. 145 (1998) 117-152.
[12] D.B. Karner, F. Marra, P. Renne, The history of the Monti Sabatini and Alban Hills
volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome, J. Volcanol.
Geotherm. Res. 107 (2001b) 185-219.
[13] N. Tetley, I. McDougall, H.R. Heydegger, Thermal neutron interferences in the 40Ar/39Ar
dating technique, J. Geophys. Res. 85 (1980) 7201-7205.
[14] P.R. Renne, K. Deckart, M. Ernesto, G. Féraud, E.M. Piccirillo, Age of the Ponta Grossa
dike swarm (Brazil) and implications for Paraná flood volcanism, Earth Planet. Sci. Lett.
144 (1996) 199-211.
[15] J.L. Kirschvink, The least-squares line and plane and the analysis of palaeomagnetic data,
Geophys. J.R. Astron. Soc. 62 (1980) 699-718.
[16] A.P. Roberts, Magnetic characteristics of sedimentary greigite (Fe3S4), Earth Planet. Sci.
Lett. 134 (1995) 227-236.
[17] M.J. Dekkers, Magnetic properties of natural pyrrhotite. II. High- and low-temperature
behaviour of Jrs and TRM as function of grain size, Phys. Earth Planet. Inter. 57 (1989)
266-283.
[18] I.F. Snowball, Gyroremanent magnetization (GRM) and the magnetic properties of greigite
bearing clays in southern Sweden, Geophys. J. Int. 129 (1997) 624-636.
[19] L. Sagnotti, A. Winkler, Rock magnetism and paleomagnetism of greigite-bearing
mudstones in the Italian peninsula, Earth Planet. Sci. Lett. 165 (1999) 67-90.
24
[20] A.P. Roberts, C.R. Pike, K.L. Verosub, FORC diagrams: a new tool for characterizing the
magnetic properties of natural samples, J. Geophys. Res. 105 (2000) 28,461-28,475.
[21] R. Raiswell, Pyrite texture, isotopic composition and the availability of iron, Am. J. Sci.
282 (1982) 1244-1263.
[22] A.P. Roberts, R. Weaver, Multiple mechanisms of remagnetization involving sedimentary
greigite (Fe3S4), Earth Planet. Sci. Lett. 231 (2005) 263-277.
[23] F. Florindo, L. Sagnotti, Paleomagnetism and rock magnetism in the upper Pliocene Valle
Ricca (Rome, Italy) section, Geophys. J. Int. 123 (1995) 340-354.
[24] W.T. Jiang, C.S. Horng, A.P. Roberts, D.R. Peacor, Contradictory magnetic polarities in
sediments and variable timing of neoformation of authigenic greigite, Earth Planet. Sci.
Lett. 193 (2001) 1-12.
[25] H. Oda, M. Torii, Sea-level change and remagnetization of continental shelf sediments off
New Jersey (ODP Leg 174A): magnetite and greigite diagenesis, Geophys. J. Int. 156
(2004) 443-458.
[26] C.J. Rowan, A.P. Roberts, Magnetite dissolution, diachronous greigite formation, and
secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in
Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett. 241 (2006) 119-137.
[27] D.B. Karner, J. Levine, B.P. Medeiros, R.A. Muller, Constructing a stacked benthic δ18O
record, Paleoceanography, 17 (2002) 10.1029/2001pa000667.
[28] V. Conato, D. Esu, A. Malatesta and F. Zarlenga, New data on the Pleistocene of Rome,
Quaternaria 22 (1980) 131-176.
[29] F. Bozzano, A. Andreucci, M. Gaeta, R. Salucci, A geological model of the buried Tiber
River valley beneath the historical centre of Rome, Bull. Ang. Geol. Env. 59 (2000) 1-21.
[30] G. Belluomini, P. Iuzzolini, L. Manfra, R. Mortari, M. Zalaffi, Evoluzione recente del delta
del Tevere, Geologica Romana 25 (1986) 213-234.
25
[31] K. Lambeck, F. Antonioli, A. Purcell, S. Silenzi, Sea-level change along the Italian coast
for the past 10.000 yr, Quaternary Science Reviews 23 (2004) 1567-1598.
[32] E. Bard, B. Hamelin, R. Fairbanks, U-Th ages obtained by mass spectrometry in corals
from Barbados: sea level during the past 130,000 years, Nature 346 (1990) 456-458.
[33] E. Bard, B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, F. Rougerie,
Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge,
Nature 382 (1996) 241-244.
[34] A.J. Ammerman, J. Miller, S. Ramsay, The mid-Holocene environment of the Velabrum in
Rome, Società Preistoria Protostoria Friuli-Venezia Giulia, Trieste, Quaderno 8 (2000) 9-
20.
[35] F.C. Bassinot, L.D. Labeyrie, E. Vincent, X. Quidelleur, N.J. Shackleton, Y. Lancelot, The
astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal,
Earth Planet. Sci. Lett. 126 (1994) 91-108.
[36] I.J. Winograd, T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J. Szabo, P.T.
Kolesar, K.M. Revesz, Continuous 500,000-year climate record from vein calcite in Devils
Hole, Nevada, Science 258 (1992) 255-260.
[37] K.R. Ludwig, K. R. Simmons, B. J. Szabo, I.J. Winograd, J.M. Landwehr, A.C., Riggs,
R.J. Hoffman, Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein,
Science 258 (1992) 284-287.
[38] D. B. Karner, F. Marra, 40Ar/39Ar dating of Glacial Termination V and the duration of
Marine Isotopic Stage 11: in: Earth’s Climate and Orbital Eccentricity: The Marine Isotope
Stage 11 Question, Geophysical Monograph 137 (2003) pp. 61-66, American Geophysical
Union, Washington, D.C.
[39] W.H. Berger, T. Bickert, H. Schmidt, T. Wefer, Quaternary oxygen isotope record of
pelagic foraminifers; Site 806, Ontong Java Plateau: Proc. ODP., Sci. Res. 130 (1992) 381-
395.
26
[40] W.H. Berger, T. Bickert, G. Wefer, M.I. Yasuda, Brunhes-Matuyama boundary; 790 k.y.
date consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch
template, Geophys. Res. Lett. 22 (1995) 1525-1528.
Type
manuscript
File(s)
Loading...
Name
1218.pdf
Size
312.89 KB
Format
Adobe PDF
Checksum (MD5)
25f6d868af07968c11ab7a74ef243e14