Options
Occurrence and persistence of magnetic elements in the quiet Sun
Language
English
Obiettivo Specifico
1VV. Altro
Status
Published
JCR Journal
JCR Journal
Title of the book
Issue/vol(year)
/611 (2018)
Pages (printed)
A56
Issued date
January 11, 2018
Keywords
Abstract
Turbulent convection efficiently transports energy up to the solar
photosphere, but its multi-scale nature and dynamic properties are still not
fully understood. Several works in the literature have investigated the
emergence of patterns of convective and magnetic nature in the quiet Sun at
spatial and temporal scales from granular to global. Aims. To shed light on the
scales of organisation at which turbulent convection operates, and its
relationship with the magnetic flux therein, we studied characteristic spatial
and temporal scales of magnetic features in the quiet Sun. Methods. Thanks to
an unprecedented data set entirely enclosing a supergranule, occurrence and
persistence analysis of magnetogram time series were used to detect spatial and
long-lived temporal correlations in the quiet Sun and to investigate their
nature. Results. A relation between occurrence and persistence representative
for the quiet Sun was found. In particular, highly recurrent and persistent
patterns were detected especially in the boundary of the supergranular cell.
These are due to moving magnetic elements undergoing motion that behaves like a
random walk together with longer decorrelations ($\sim2$ h) with respect to
regions inside the supergranule. In the vertices of the supegranular cell the
maximum observed occurrence is not associated with the maximum persistence,
suggesting that there are different dynamic regimes affecting the magnetic
elements.
photosphere, but its multi-scale nature and dynamic properties are still not
fully understood. Several works in the literature have investigated the
emergence of patterns of convective and magnetic nature in the quiet Sun at
spatial and temporal scales from granular to global. Aims. To shed light on the
scales of organisation at which turbulent convection operates, and its
relationship with the magnetic flux therein, we studied characteristic spatial
and temporal scales of magnetic features in the quiet Sun. Methods. Thanks to
an unprecedented data set entirely enclosing a supergranule, occurrence and
persistence analysis of magnetogram time series were used to detect spatial and
long-lived temporal correlations in the quiet Sun and to investigate their
nature. Results. A relation between occurrence and persistence representative
for the quiet Sun was found. In particular, highly recurrent and persistent
patterns were detected especially in the boundary of the supergranular cell.
These are due to moving magnetic elements undergoing motion that behaves like a
random walk together with longer decorrelations ($\sim2$ h) with respect to
regions inside the supergranule. In the vertices of the supegranular cell the
maximum observed occurrence is not associated with the maximum persistence,
suggesting that there are different dynamic regimes affecting the magnetic
elements.
Type
article
File(s)
Loading...
Name
Giannattasio&al2018.pdf
Size
2.63 MB
Format
Adobe PDF
Checksum (MD5)
e96eae1ad2c041f99f7580a31079c193