Options
Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy)
Language
English
Obiettivo Specifico
2V. Dinamiche di unrest e scenari pre-eruttivi
5V. Sorveglianza vulcanica ed emergenze
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
2/120 (2015)
Electronic ISSN
2169-9356
Publisher
Wiley
Pages (printed)
812–826
Issued date
February 7, 2015
Alternative Location
Abstract
Different procedures were used to analyze a comprehensive time series of nighttime thermal
infrared images acquired from October 2006 to June 2013 by a permanent station at Pisciarelli (Campi
Flegrei, Italy). The methodologies were aimed at the detection and quantification of possible spatiotemporal
changes in the ground-surface thermal features of an area affected by diffuse degassing. Long-term infrared
time series images were processed without taking into account atmospheric conditions and emissivity
estimations. The data obtained were compared with the trends of independent geophysical and geochemical
parameters, which suggested that long-term temporal variations of the surface maximum temperatures were
governed by the dynamics of the deeper hydrothermal system. Analogously, the dynamics of the shallow
hydrothermal system are likely to control the short-period thermal oscillations that overlie the long-term
thermal signals. The map of the yearly rates of temperature change shows temperature increases clustered
in the thermal anomalous area of the infrared images, without evidence of modifications to the extension of
the anomaly or of growth of new areas with significant thermal emission. This suggests that in the present state,
the heat transfer is mainly due to hot gas emission through preexisting fractures and vents. Our data indicate
that the comprehensive picture of the spatiotemporal evolution of the thermal features of the hydrothermal
sites obtained by long-term infrared monitoring can provide useful information toward refining physical
and conceptual models, as well as improving surveillance of active volcanoes.
infrared images acquired from October 2006 to June 2013 by a permanent station at Pisciarelli (Campi
Flegrei, Italy). The methodologies were aimed at the detection and quantification of possible spatiotemporal
changes in the ground-surface thermal features of an area affected by diffuse degassing. Long-term infrared
time series images were processed without taking into account atmospheric conditions and emissivity
estimations. The data obtained were compared with the trends of independent geophysical and geochemical
parameters, which suggested that long-term temporal variations of the surface maximum temperatures were
governed by the dynamics of the deeper hydrothermal system. Analogously, the dynamics of the shallow
hydrothermal system are likely to control the short-period thermal oscillations that overlie the long-term
thermal signals. The map of the yearly rates of temperature change shows temperature increases clustered
in the thermal anomalous area of the infrared images, without evidence of modifications to the extension of
the anomaly or of growth of new areas with significant thermal emission. This suggests that in the present state,
the heat transfer is mainly due to hot gas emission through preexisting fractures and vents. Our data indicate
that the comprehensive picture of the spatiotemporal evolution of the thermal features of the hydrothermal
sites obtained by long-term infrared monitoring can provide useful information toward refining physical
and conceptual models, as well as improving surveillance of active volcanoes.
Sponsors
The TIR monitoring system was partially funded by the 2000–2006 National Operating
Programme and by the Italian Civil Protection Department in the framework of the 2004–2006 agreement with the Istituto Nazionale di Geofisica e Vulcanologia.
Programme and by the Italian Civil Protection Department in the framework of the 2004–2006 agreement with the Istituto Nazionale di Geofisica e Vulcanologia.
References
Amoruso, A., L. Crescentini, I. Sabbetta, P. De Martino, F. Obrizzo, and U. Tammaro (2014), Clues to the cause of the 2011–2013 Campi Flegrei
caldera unrest, Italy, from continuous GPS data, Geophys. Res. Lett., 41, 3081–3088, doi:10.1002/2014GL059539.
Ball, M., and H. Pinkerton (2006), Factors affecting the accuracy of thermal imaging cameras in volcanology, J. Geophys. Res., 111, B11203,
doi:10.1029/2005JB003829.
Caliro, S., G. Chiodini, D. Galluzzo, D. Granieri, M. La Rocca, G. Saccorotti, and G. Ventura (2005), Recent activity of Nisyros volcano (Greece)
inferred from structural, geochemical and seismological data, Bull. Volcanol., 67, 358–369, doi:10.1007/s00445-004-0381-7.Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura (2001), CO2 degassing and energy release at Solfatara Volcano,
Campi Flegrei, Italy, J. Geophys. Res., 106(B8), 16,213–16,221, doi:10.1029/2001JB000246.
Chiodini, G., D. Granieri, R. Avino, S. Caliro, and A. Costa (2005), Carbon dioxide diffuse degassing and estimation of heat release from volcanic
and hydrothermal systems, J. Geophys. Res., 110, B08204, doi:10.1029/2004JB003542.
Chiodini, G., G. Vilardo, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2007), Thermal monitoring of hydrothermal activity by
permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy), J. Geophys. Res., 112, B12206,
doi:10.1029/2007JB005140.
Chiodini, G., S. Caliro, C. Cardellini, D. Granieri, R. Avino, A. Baldini, M. Donnini, and C. Minopoli (2010), Long-term variations of the Campi
Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity, J. Geophys. Res., 115, B03205, doi:10.1029/
2008JB006258.
Chiodini, G., R. Avino, S. Caliro, and C. Minopoli (2011), Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei),
Ann. Geophys., 54, 2, doi:10.4401/ag-5002.
Chiodini, G., S. Caliro, P. De Martino, R. Avino, and F. Gherardi (2012), Early signals of new volcanic unrest at Campi Flegrei caldera? Insights
from geochemical data and physical simulations, Geology, 40, 943–946, doi:10.1130/G33251.1.
Cook, R. D., and S. Weisberg (1982), Residuals and Influence in Regression, Chapman and Hall, New York.
D’Auria, L., F. Giudicepietro, I. Aquino, G. Borriello, C. Del Gaudio, D. Lo Bascio, M. Martini, G. P. Ricciardi, P. Ricciolino, and C. Ricco (2011),
Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010), J. Geophys. Res., 116,
B04313, doi:10.1029/2010JB007837.
De Martino, P., U. Tammaro, and F. Obrizzo (2014), GPS time series at Campi Flegrei caldera (2000–2013), Ann. Geophys., 57(2), S0213,
doi:10.4401/ag-643.
Del Gaudio, C., I. Aquino, G. P. Ricciardi, C. Ricco, and R. Scandone (2010), Unrest episodes at Campi Flegrei: A reconstruction of vertical
ground movements during 1905–2009, J. Volcanol. Geoth. Res., 195, 48–56, doi:10.1016/j.jvolgeores.2010.05.014.
Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic and deformational history of
the Campi Flegrei caldera in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246.
Diliberto, I. S. (2013), Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, Italy),
J. Volcanol. Geotherm. Res., 264, 150–163, doi:10.1016/j.jvolgeores.2013.08.003.
Gaudin, D., F. Beauducel, P. Allemand, C. Delacourt, and A. Finizola (2013), Heat fluxmeasurement from thermal infrared imagery in low-flux fumarolic
zones: Example of the Ty fault (La Soufrière de Guadeloupe), J. Volcanol. Geotherm. Res., 267, 47–56, doi:10.1016/j.jvolgeores.2013.09.009.
Gottsmann, J., and J. Marti (2008), Caldera volcanism: Analysis, modeling and response, Dev. Volcanol., 10.
Guidoboni, E., and C. Ciuccarelli (2010), The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte
Nuovo eruption and ensuing earthquakes (twelfth century 1582 A.D.), Bull. Volcanol., 73(6), 655–677, doi:10.1007/s00445-010-0430-3.
Guizar-Sicairos, M., S. T. Thurman, and J. R. Fienup (2008), Efficient subpixel image registration algorithms, Opt. Lett., 33, 156–158.
Harris, A. J. L. (2013), Thermal Remote Sensing of Active Volcanoes: A User’s Manual, Cambridge Univ. Press, Cambridge, U. K.
Harris, A. J. L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the volcano fumarole field, Bull. Volcanol., 71,
441–458, doi:10.1007/s00445-008-0236-8.
Hurwitz, S., R. N. Harris, C. A. Werner, and F. Murphy (2012), Heat flow in vapor-dominated areas of the Yellowstone Plateau volcanic field:
Implications for the thermal budget of the Yellowstone caldera, J. Geophys. Res., 117, B10207, doi:10.1029/2012JB009463.
Hutchison, W., N. Varley, D. M. Pyle, T. A. Mather, and J. A. Stevenson (2013), Airborne thermal remote sensing of the Volcán de Colima
(Mexico) lava dome from 2007 to 2010, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather,
and J. Biggs, Geol. Soc. London. Spec. Publ., 380, 203–228.
Isaia, R., P. Marianelli, and A. Sbrana (2009), Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for
caldera dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303, doi:10.1029/2009GL040513.
Lagios, E., S. Vassilopoulou, V. Sakkas, V. Dietrich, B. N. Damiata, and A. Ganas (2007), Testing satellite and ground thermal imaging of
low-temperature fumarolic fields: The dormant Nisyros Volcano (Greece), ISPRS J. Photogramm. Remote Sens., 62, 447–460,
doi:10.1016/isprsjprs.2007.07.003.
Lodato, L., L. Spampinato, A. J. L. Harris, J. Dehn, M. R. James, E. Pecora, E. Biale, and A. Curcuruto (2008), Use of forward looking infrared
thermal cameras at active volcanoes, in Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes,
edited by W. Marzocchi and A. Zollo, pp. 427–434, INGV, Italy.
Lowenstern, J. B., R. B. Smith, and D. P. Hill (2006), Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and
other large caldera systems, Philos. Trans. R. Soc. A., 364, 2055–2072.
Matsushima, N., K. Kazahaya, G. Saito, and H. Shinohara (2003), Mass and heat flux of volcanic gas discharging from the summit crater of
Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999, J. Volcanol. Geotherm. Res., 126, 285–301, doi:10.1016/S0377-0273(03)
00152-5.
Minet, C., et al. (2012), High resolution monitoring of Campi Flegrei (Naples, Italy) by exploiting TerraSAR-X data: An application to Solfatara
crater, Proceedings of the “Fringe 2011” ESA Workshop.
Newhall, C. G., and D. Dzurisin (1988), Historical unrest at large calderas of the world, U.S. Geol. Surv. Bull., 1855, 1108.
Nowotarski, J., J. Tomczyk, and R. Weron (2013), Robust estimation and forecasting of the long-term seasonal component of electricity spot
prices, Energ. Econ., 39, 13–27, doi:10.1016/j.eneco.2013.04.004.
Orsi, G., L. Civetta, C. Del Gaudio, S. de Vita, M. A. Di Vito, R. Isaia, S. Petrazzuoli, G. P. Ricciardi, and C. Ricco (1999), Short-term ground
deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block resurgence in a densely populated
area, J. Volcanol. Geotherm. Res., 91, 415–451.
Orsi, G., M. A. Di Vito, and R. Isaia (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530.
Pantaleo, M., and T. R. Walter (2014), The ring-shaped thermal field of Stefanos crater, Nisyros Island: A conceptual model, Solid Earth, 5,
183–198, doi:10.5194/se-5-183-2014.
Petrosino, S., N. Damiano, P. Cusano, M. A. Di Vito, S. deVita, and E. Del Pezzo (2012), Subsurface structure of the Solfatara volcano (Campi
Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis, Geochem. Geophys.
Geosyst., 13, Q07006, doi:10.1029/2011GC004030.
Ramsey, M. S., and A. J. L. Harris (2013), Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next
decade?, J. Volcanol. Geotherm. Res., 249, 217–233, doi:10.1016/j.jvolgeores.2012.05.011.
Saccorotti, G., S. Petrosino, F. Bianco, M. Castellano, D. Galluzzo, M. La Rocca, E. Del Pezzo, L. Zaccarelli, and P. Cusano (2007),
Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei caldera, Italy, Phys. Earth Planet. Inter., 165,
14–24, doi:10.1016/j.pepi.2007.07.006.Sansivero, F., G. Scarpato, and G. Vilardo (2013), The automated infrared thermal imaging system for the continuous long-term monitoring of
the surface temperature of the Vesuvius crater, Ann. Geophys., 56, S0454, doi:10.4401/ag-6460.
Sawyer, G. M., andM. R. Burton(2006), Effects of a volcanicplumeon thermal imagingdata, Geophys. Res. Lett., 33, L14311, doi:10.1029/2005GL025320.
Spampinato, L., S. Calvari, C. Oppenheimer, and E. Boschi (2011), Volcano surveillance using infrared cameras, Earth Sci. Rev., 106, 63–91,
doi:10.1016/j.earscirev.2011.01.003.
Spampinato, L., C. Oppenheimer, A. Cannata, P. Montalto, G. Salerno, and S. Calvari (2012), On the time-scale of thermal cycles associated
with open-vent degassing, Bull. Volcanol., 74, 1281–1292, doi:10.1007/s00445-012-0592-2.
Stevenson, J. A., and N. Varley (2008), Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007,
J. Volcanol. Geotherm. Res., 177, 911–924, doi:10.1016/j.jvolgeores.2008.07.003.
Tank, V., H. Pfanz, and H. Kick (2008), New remote sensing techniques for the detection and quantification of Earth surface CO2 degassing,
J. Volcanol. Geotherm. Res., 177, 515–524, doi:10.1016/j.jvolgeores.2008.06.034.
Troiano, A., M. G. Di Giuseppe, Z. Petrillo, C. Troise, and G. De Natale (2011), Ground deformation at calderas driven by fluid injection:
Modelling unrest episodes at Campi Flegrei (Italy), Geophys. J. Int., 187, 833–847, doi:10.1111/j.1365-246X.2011.05149.x.
Troise, C., G. De Natale, and C. R. J. Kilburn (2006), Mechanisms of Activity and Unrest at Large Calderas, Geol. Soc. London. Spec. Publ., 269, 1–24.
Troise, C., G. De Natale, F. Pingue, F. Obrizzo, P. De Martino, U. Tammaro, and E. Boschi (2007), Renewed ground uplift at Campi Flegrei caldera
(Italy): New insight on magmatic processes and forecast, Geophys. Res. Lett., 34, L03301, doi:10.1029/2006GL028545.
Vilardo, G., G. Chiodini, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2008), The permanent thermal infrared network for the
monitoring of hydrothermal activity at the Solfatara and Vesuvius volcanoes, in Conception, Verification and Application of Innovative
Techniques To Study Active Volcanoes, edited by W. Marzocchi and A. Zollo, pp. 481-495, INGV, Italy.
Vilardo, G., R. Isaia, G. Ventura, P. De Martino, and C. Terranova (2010), InSAR Permanent Scatterer analysis reveals fault reactivation during
inflation and deflation episodes at Campi Flegrei caldera, Remote Sens. Environ., 114, 2373–2383, doi:10.1016/j.rse.2010.05.014.
Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4(7), 1061,
doi:10.1029/2002GC000473.
Weron, R. (2013), DESEASONALIZE: MATLAB function to remove short and long term seasonal components (new implementation), HSC
Software M013004, Hugo Steinhaus Center, Wroclaw Univ. of Technology.
Zaksek, K., M. Shirzaei, and M. Hort (2013), Constraining the uncertainties of volcano thermal anomaly monitoring using a Kalman filter
technique, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather, and J. Biggs, Geol. Soc. London Spec.
Publ., 380, 138–160.
caldera unrest, Italy, from continuous GPS data, Geophys. Res. Lett., 41, 3081–3088, doi:10.1002/2014GL059539.
Ball, M., and H. Pinkerton (2006), Factors affecting the accuracy of thermal imaging cameras in volcanology, J. Geophys. Res., 111, B11203,
doi:10.1029/2005JB003829.
Caliro, S., G. Chiodini, D. Galluzzo, D. Granieri, M. La Rocca, G. Saccorotti, and G. Ventura (2005), Recent activity of Nisyros volcano (Greece)
inferred from structural, geochemical and seismological data, Bull. Volcanol., 67, 358–369, doi:10.1007/s00445-004-0381-7.Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura (2001), CO2 degassing and energy release at Solfatara Volcano,
Campi Flegrei, Italy, J. Geophys. Res., 106(B8), 16,213–16,221, doi:10.1029/2001JB000246.
Chiodini, G., D. Granieri, R. Avino, S. Caliro, and A. Costa (2005), Carbon dioxide diffuse degassing and estimation of heat release from volcanic
and hydrothermal systems, J. Geophys. Res., 110, B08204, doi:10.1029/2004JB003542.
Chiodini, G., G. Vilardo, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2007), Thermal monitoring of hydrothermal activity by
permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy), J. Geophys. Res., 112, B12206,
doi:10.1029/2007JB005140.
Chiodini, G., S. Caliro, C. Cardellini, D. Granieri, R. Avino, A. Baldini, M. Donnini, and C. Minopoli (2010), Long-term variations of the Campi
Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity, J. Geophys. Res., 115, B03205, doi:10.1029/
2008JB006258.
Chiodini, G., R. Avino, S. Caliro, and C. Minopoli (2011), Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei),
Ann. Geophys., 54, 2, doi:10.4401/ag-5002.
Chiodini, G., S. Caliro, P. De Martino, R. Avino, and F. Gherardi (2012), Early signals of new volcanic unrest at Campi Flegrei caldera? Insights
from geochemical data and physical simulations, Geology, 40, 943–946, doi:10.1130/G33251.1.
Cook, R. D., and S. Weisberg (1982), Residuals and Influence in Regression, Chapman and Hall, New York.
D’Auria, L., F. Giudicepietro, I. Aquino, G. Borriello, C. Del Gaudio, D. Lo Bascio, M. Martini, G. P. Ricciardi, P. Ricciolino, and C. Ricco (2011),
Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010), J. Geophys. Res., 116,
B04313, doi:10.1029/2010JB007837.
De Martino, P., U. Tammaro, and F. Obrizzo (2014), GPS time series at Campi Flegrei caldera (2000–2013), Ann. Geophys., 57(2), S0213,
doi:10.4401/ag-643.
Del Gaudio, C., I. Aquino, G. P. Ricciardi, C. Ricco, and R. Scandone (2010), Unrest episodes at Campi Flegrei: A reconstruction of vertical
ground movements during 1905–2009, J. Volcanol. Geoth. Res., 195, 48–56, doi:10.1016/j.jvolgeores.2010.05.014.
Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic and deformational history of
the Campi Flegrei caldera in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246.
Diliberto, I. S. (2013), Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, Italy),
J. Volcanol. Geotherm. Res., 264, 150–163, doi:10.1016/j.jvolgeores.2013.08.003.
Gaudin, D., F. Beauducel, P. Allemand, C. Delacourt, and A. Finizola (2013), Heat fluxmeasurement from thermal infrared imagery in low-flux fumarolic
zones: Example of the Ty fault (La Soufrière de Guadeloupe), J. Volcanol. Geotherm. Res., 267, 47–56, doi:10.1016/j.jvolgeores.2013.09.009.
Gottsmann, J., and J. Marti (2008), Caldera volcanism: Analysis, modeling and response, Dev. Volcanol., 10.
Guidoboni, E., and C. Ciuccarelli (2010), The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseisms, the Monte
Nuovo eruption and ensuing earthquakes (twelfth century 1582 A.D.), Bull. Volcanol., 73(6), 655–677, doi:10.1007/s00445-010-0430-3.
Guizar-Sicairos, M., S. T. Thurman, and J. R. Fienup (2008), Efficient subpixel image registration algorithms, Opt. Lett., 33, 156–158.
Harris, A. J. L. (2013), Thermal Remote Sensing of Active Volcanoes: A User’s Manual, Cambridge Univ. Press, Cambridge, U. K.
Harris, A. J. L., L. Lodato, J. Dehn, and L. Spampinato (2009), Thermal characterization of the volcano fumarole field, Bull. Volcanol., 71,
441–458, doi:10.1007/s00445-008-0236-8.
Hurwitz, S., R. N. Harris, C. A. Werner, and F. Murphy (2012), Heat flow in vapor-dominated areas of the Yellowstone Plateau volcanic field:
Implications for the thermal budget of the Yellowstone caldera, J. Geophys. Res., 117, B10207, doi:10.1029/2012JB009463.
Hutchison, W., N. Varley, D. M. Pyle, T. A. Mather, and J. A. Stevenson (2013), Airborne thermal remote sensing of the Volcán de Colima
(Mexico) lava dome from 2007 to 2010, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather,
and J. Biggs, Geol. Soc. London. Spec. Publ., 380, 203–228.
Isaia, R., P. Marianelli, and A. Sbrana (2009), Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for
caldera dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303, doi:10.1029/2009GL040513.
Lagios, E., S. Vassilopoulou, V. Sakkas, V. Dietrich, B. N. Damiata, and A. Ganas (2007), Testing satellite and ground thermal imaging of
low-temperature fumarolic fields: The dormant Nisyros Volcano (Greece), ISPRS J. Photogramm. Remote Sens., 62, 447–460,
doi:10.1016/isprsjprs.2007.07.003.
Lodato, L., L. Spampinato, A. J. L. Harris, J. Dehn, M. R. James, E. Pecora, E. Biale, and A. Curcuruto (2008), Use of forward looking infrared
thermal cameras at active volcanoes, in Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes,
edited by W. Marzocchi and A. Zollo, pp. 427–434, INGV, Italy.
Lowenstern, J. B., R. B. Smith, and D. P. Hill (2006), Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and
other large caldera systems, Philos. Trans. R. Soc. A., 364, 2055–2072.
Matsushima, N., K. Kazahaya, G. Saito, and H. Shinohara (2003), Mass and heat flux of volcanic gas discharging from the summit crater of
Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999, J. Volcanol. Geotherm. Res., 126, 285–301, doi:10.1016/S0377-0273(03)
00152-5.
Minet, C., et al. (2012), High resolution monitoring of Campi Flegrei (Naples, Italy) by exploiting TerraSAR-X data: An application to Solfatara
crater, Proceedings of the “Fringe 2011” ESA Workshop.
Newhall, C. G., and D. Dzurisin (1988), Historical unrest at large calderas of the world, U.S. Geol. Surv. Bull., 1855, 1108.
Nowotarski, J., J. Tomczyk, and R. Weron (2013), Robust estimation and forecasting of the long-term seasonal component of electricity spot
prices, Energ. Econ., 39, 13–27, doi:10.1016/j.eneco.2013.04.004.
Orsi, G., L. Civetta, C. Del Gaudio, S. de Vita, M. A. Di Vito, R. Isaia, S. Petrazzuoli, G. P. Ricciardi, and C. Ricco (1999), Short-term ground
deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block resurgence in a densely populated
area, J. Volcanol. Geotherm. Res., 91, 415–451.
Orsi, G., M. A. Di Vito, and R. Isaia (2004), Volcanic hazard assessment at the restless Campi Flegrei caldera, Bull. Volcanol., 66, 514–530.
Pantaleo, M., and T. R. Walter (2014), The ring-shaped thermal field of Stefanos crater, Nisyros Island: A conceptual model, Solid Earth, 5,
183–198, doi:10.5194/se-5-183-2014.
Petrosino, S., N. Damiano, P. Cusano, M. A. Di Vito, S. deVita, and E. Del Pezzo (2012), Subsurface structure of the Solfatara volcano (Campi
Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis, Geochem. Geophys.
Geosyst., 13, Q07006, doi:10.1029/2011GC004030.
Ramsey, M. S., and A. J. L. Harris (2013), Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next
decade?, J. Volcanol. Geotherm. Res., 249, 217–233, doi:10.1016/j.jvolgeores.2012.05.011.
Saccorotti, G., S. Petrosino, F. Bianco, M. Castellano, D. Galluzzo, M. La Rocca, E. Del Pezzo, L. Zaccarelli, and P. Cusano (2007),
Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei caldera, Italy, Phys. Earth Planet. Inter., 165,
14–24, doi:10.1016/j.pepi.2007.07.006.Sansivero, F., G. Scarpato, and G. Vilardo (2013), The automated infrared thermal imaging system for the continuous long-term monitoring of
the surface temperature of the Vesuvius crater, Ann. Geophys., 56, S0454, doi:10.4401/ag-6460.
Sawyer, G. M., andM. R. Burton(2006), Effects of a volcanicplumeon thermal imagingdata, Geophys. Res. Lett., 33, L14311, doi:10.1029/2005GL025320.
Spampinato, L., S. Calvari, C. Oppenheimer, and E. Boschi (2011), Volcano surveillance using infrared cameras, Earth Sci. Rev., 106, 63–91,
doi:10.1016/j.earscirev.2011.01.003.
Spampinato, L., C. Oppenheimer, A. Cannata, P. Montalto, G. Salerno, and S. Calvari (2012), On the time-scale of thermal cycles associated
with open-vent degassing, Bull. Volcanol., 74, 1281–1292, doi:10.1007/s00445-012-0592-2.
Stevenson, J. A., and N. Varley (2008), Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007,
J. Volcanol. Geotherm. Res., 177, 911–924, doi:10.1016/j.jvolgeores.2008.07.003.
Tank, V., H. Pfanz, and H. Kick (2008), New remote sensing techniques for the detection and quantification of Earth surface CO2 degassing,
J. Volcanol. Geotherm. Res., 177, 515–524, doi:10.1016/j.jvolgeores.2008.06.034.
Troiano, A., M. G. Di Giuseppe, Z. Petrillo, C. Troise, and G. De Natale (2011), Ground deformation at calderas driven by fluid injection:
Modelling unrest episodes at Campi Flegrei (Italy), Geophys. J. Int., 187, 833–847, doi:10.1111/j.1365-246X.2011.05149.x.
Troise, C., G. De Natale, and C. R. J. Kilburn (2006), Mechanisms of Activity and Unrest at Large Calderas, Geol. Soc. London. Spec. Publ., 269, 1–24.
Troise, C., G. De Natale, F. Pingue, F. Obrizzo, P. De Martino, U. Tammaro, and E. Boschi (2007), Renewed ground uplift at Campi Flegrei caldera
(Italy): New insight on magmatic processes and forecast, Geophys. Res. Lett., 34, L03301, doi:10.1029/2006GL028545.
Vilardo, G., G. Chiodini, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, and C. Terranova (2008), The permanent thermal infrared network for the
monitoring of hydrothermal activity at the Solfatara and Vesuvius volcanoes, in Conception, Verification and Application of Innovative
Techniques To Study Active Volcanoes, edited by W. Marzocchi and A. Zollo, pp. 481-495, INGV, Italy.
Vilardo, G., R. Isaia, G. Ventura, P. De Martino, and C. Terranova (2010), InSAR Permanent Scatterer analysis reveals fault reactivation during
inflation and deflation episodes at Campi Flegrei caldera, Remote Sens. Environ., 114, 2373–2383, doi:10.1016/j.rse.2010.05.014.
Werner, C., and S. Brantley (2003), CO2 emissions from the Yellowstone volcanic system, Geochem. Geophys. Geosyst., 4(7), 1061,
doi:10.1029/2002GC000473.
Weron, R. (2013), DESEASONALIZE: MATLAB function to remove short and long term seasonal components (new implementation), HSC
Software M013004, Hugo Steinhaus Center, Wroclaw Univ. of Technology.
Zaksek, K., M. Shirzaei, and M. Hort (2013), Constraining the uncertainties of volcano thermal anomaly monitoring using a Kalman filter
technique, in Remote Sensing of Volcanoes and Volcanic Processes, edited by D. M. Pyle, T. A. Mather, and J. Biggs, Geol. Soc. London Spec.
Publ., 380, 138–160.
Type
article
File(s)
No Thumbnail Available
Name
2015_JGR_JB011497.pdf
Description
Main Text
Size
9.06 MB
Format
Adobe PDF
Checksum (MD5)
2ac00785cda76d00a66ec6ad719731c1