Quality Assessment of Melanocratic Basalt for Mineral Fiber Product, Southern Urals, Russia
Author(s)
Language
English
Obiettivo Specifico
5A. Energia e georisorse
Status
Published
JCR Journal
N/A or not JCR
Journal
Issue/vol(year)
3/24 (2015)
ISSN
1520-7439
Electronic ISSN
1573-8981
Publisher
Plenum Press
Pages (printed)
329–337
Date Issued
2015
Abstract
Basalt fibers have recently come into the spotlight due to their superior physical and
chemical properties, which rank only below expensive carbon and silicon carbide fibers. The
suitability of raw material for basalt fiber production is mainly determined by the mineral
composition and crystallization properties of basalt melts. In this article, we present the
results of integrated petrographic and mineralogical analyses of melanocratic basalts from
the Southern Urals, in order to assess their suitability for the production of high quality
basalt fibers. The low acidity and viscosity parameters indicate the possibility of producing
brittle fibers with poor chemical resistance. Moreover, the refractory impurities decrease the
quality of products made from these fibers. However, acceptable insulation properties are
exhibited by the melanocratic basalts and therefore their significance in the construction
industry is still high.
chemical properties, which rank only below expensive carbon and silicon carbide fibers. The
suitability of raw material for basalt fiber production is mainly determined by the mineral
composition and crystallization properties of basalt melts. In this article, we present the
results of integrated petrographic and mineralogical analyses of melanocratic basalts from
the Southern Urals, in order to assess their suitability for the production of high quality
basalt fibers. The low acidity and viscosity parameters indicate the possibility of producing
brittle fibers with poor chemical resistance. Moreover, the refractory impurities decrease the
quality of products made from these fibers. However, acceptable insulation properties are
exhibited by the melanocratic basalts and therefore their significance in the construction
industry is still high.
References
Aslanova, M. S., Kolesov, Y. I., & Khazanov, V. E. (1979). Glass
fibers. Moscow: Khimiya (in Russian).
Basaltfm. (2014). http://www.basaltfm.com.
Bocharova, I. N., Gorbachev, G. F., & Ivanitskiiı`, S. G. (2005).
Formation and properties of continuous basalt fibers. In
Proceedings of the International Science and Technology
Seminar on New Materials and Tools (pp 8–19). Kiev:
Naukova Dumka (in Russian).
Cziga´ny, T. (2005). Basalt fiber reinforced hybrid polymer composites.
Materials Science Forum, 473–474, 59–66.
Deer, W. A., Howie, R. A., & Zussman, J. (1965). Rock-forming
minerals. New York: Academic Press.
Dzhigiris, D. D., & Makhova, M. F. (2002). Production basis for
basalt fibers and products (p. 412). Moscow: Teploenergetik.
Dzhigiris, D. D., Volynskii, A. K., & Kozlovskii, P. P. (1980).
Principles of production technology for and properties of
basalt fibers. Basalt fiber composite materials and structures
(pp. 54–81). Kiev: Naukova Dumka (in Russian).
Fershtater, G. B., & Bea, F. (1996). Geochemical typification of
the Ural ophiolites. Geokhimia, 3, 195–218.
Gromkov, B. K., Smirnov, L. N., Trofimov, A. N. & Zharov, A. I.
(2001). Basalt fibrous materials (pp. 54–64). Moscow: Informkonversia
(in Russian).
Gutnikov, S. I., Manylov, M. S., Lipatov, Ya. V., Lazoryak, B. I.,
& Pokholok, K. V. (2013). Effect of the reduction treatment
on the basalt continuous fiber crystallization properties.
Journal of Non-Crystalline Solids, 368, 45–50.
Ivanitskii, S. G., Chuvashov, Y. M., & Yashchenko, O. M. (2008).
Physical properties of rocks, melts, and glass. Sovr. Probl.
Fiz. Materialoved, 17, 118–125.
Khodakovsky, M. D. (1973). Production of glass fibers and fabrics.
Moscow: Khimiya (in Russian).
Koroteev, V. A., De Boorder, H., Necheukhin, V. M., & Sazonov,
V. N. (1997). Geodynamic setting of the mineral deposits of
Urals. Tectonophysics, 276, 291–300.
Makhova, M. F. (1968). Crystallization of basalt fibers. Steklo i
Keramika, 11, 22–23.
Militky´ , J., Kovacˇicˇ, V., & Bajzı´k, V. (2007). Mechanical properties
of basalt filaments. Fibres & Textiles in Eastern Europe,
15, 64–65.
Militky´ , J., Kovacˇicˇ, V., & Rubnerova´ , J. (2002). Influence of
thermal treatment on tensile failure of basalt fibers. Engineering
Fracture Mechanics, 69, 1025–1033.
Osovetsky, B. M. (2001). Tipohimizm schlich minerals (p. 244).
Perm: Perm State University Press.
Perevozchikov, B. V., Osovetsky, B. M., Menshikova, E. A., &
Kazymov, K. P. (2012). Methodology for integrated study of
the gabbro-basalt raw material for the production of basalt
fiber (pp. 199–205). Perm: Geology and Mineral Resources of
the Western Urals, PGNIU.
Samarkin, G. I., & Samarkina, Y. (1988). Granitoids from southern
Urals and origin of Granitic Belts in folded regions.
Moscow: Nauka.
Scheffler, C., Fo¨ rster, T., Ma¨der, E., Heinrich, G., Hempel, S., &
Mechtcherine, V. (2009). Aging of alkali-resistant glass and
basalt fibers in alkaline solutions: Evaluation of the failure
stress by Weibull distribution function. Journal of Non-
Crystalline Solids, 355, 2588–2595.
Trefilov, V. I., Makhova, M. F., & Dzhigiris, D. D. (1992). Rawmaterials
base for fiber production in Ukraine. Industry of
Structural Materials. Ser. 6, Issue 2, Vsesoyuz. Nauch. Issled.
Inst. Nauch. Tekh. Inform. Ekonom. Promyshl. Stroit. Mater.
Moscow (in Russian).
Wei, B., Cao, H., & Song, S. (2010). Environmental resistance and
mechanical performance of basalt and glass fibers. Materials
Science and Engineering, 527, 4708–4715.
fibers. Moscow: Khimiya (in Russian).
Basaltfm. (2014). http://www.basaltfm.com.
Bocharova, I. N., Gorbachev, G. F., & Ivanitskiiı`, S. G. (2005).
Formation and properties of continuous basalt fibers. In
Proceedings of the International Science and Technology
Seminar on New Materials and Tools (pp 8–19). Kiev:
Naukova Dumka (in Russian).
Cziga´ny, T. (2005). Basalt fiber reinforced hybrid polymer composites.
Materials Science Forum, 473–474, 59–66.
Deer, W. A., Howie, R. A., & Zussman, J. (1965). Rock-forming
minerals. New York: Academic Press.
Dzhigiris, D. D., & Makhova, M. F. (2002). Production basis for
basalt fibers and products (p. 412). Moscow: Teploenergetik.
Dzhigiris, D. D., Volynskii, A. K., & Kozlovskii, P. P. (1980).
Principles of production technology for and properties of
basalt fibers. Basalt fiber composite materials and structures
(pp. 54–81). Kiev: Naukova Dumka (in Russian).
Fershtater, G. B., & Bea, F. (1996). Geochemical typification of
the Ural ophiolites. Geokhimia, 3, 195–218.
Gromkov, B. K., Smirnov, L. N., Trofimov, A. N. & Zharov, A. I.
(2001). Basalt fibrous materials (pp. 54–64). Moscow: Informkonversia
(in Russian).
Gutnikov, S. I., Manylov, M. S., Lipatov, Ya. V., Lazoryak, B. I.,
& Pokholok, K. V. (2013). Effect of the reduction treatment
on the basalt continuous fiber crystallization properties.
Journal of Non-Crystalline Solids, 368, 45–50.
Ivanitskii, S. G., Chuvashov, Y. M., & Yashchenko, O. M. (2008).
Physical properties of rocks, melts, and glass. Sovr. Probl.
Fiz. Materialoved, 17, 118–125.
Khodakovsky, M. D. (1973). Production of glass fibers and fabrics.
Moscow: Khimiya (in Russian).
Koroteev, V. A., De Boorder, H., Necheukhin, V. M., & Sazonov,
V. N. (1997). Geodynamic setting of the mineral deposits of
Urals. Tectonophysics, 276, 291–300.
Makhova, M. F. (1968). Crystallization of basalt fibers. Steklo i
Keramika, 11, 22–23.
Militky´ , J., Kovacˇicˇ, V., & Bajzı´k, V. (2007). Mechanical properties
of basalt filaments. Fibres & Textiles in Eastern Europe,
15, 64–65.
Militky´ , J., Kovacˇicˇ, V., & Rubnerova´ , J. (2002). Influence of
thermal treatment on tensile failure of basalt fibers. Engineering
Fracture Mechanics, 69, 1025–1033.
Osovetsky, B. M. (2001). Tipohimizm schlich minerals (p. 244).
Perm: Perm State University Press.
Perevozchikov, B. V., Osovetsky, B. M., Menshikova, E. A., &
Kazymov, K. P. (2012). Methodology for integrated study of
the gabbro-basalt raw material for the production of basalt
fiber (pp. 199–205). Perm: Geology and Mineral Resources of
the Western Urals, PGNIU.
Samarkin, G. I., & Samarkina, Y. (1988). Granitoids from southern
Urals and origin of Granitic Belts in folded regions.
Moscow: Nauka.
Scheffler, C., Fo¨ rster, T., Ma¨der, E., Heinrich, G., Hempel, S., &
Mechtcherine, V. (2009). Aging of alkali-resistant glass and
basalt fibers in alkaline solutions: Evaluation of the failure
stress by Weibull distribution function. Journal of Non-
Crystalline Solids, 355, 2588–2595.
Trefilov, V. I., Makhova, M. F., & Dzhigiris, D. D. (1992). Rawmaterials
base for fiber production in Ukraine. Industry of
Structural Materials. Ser. 6, Issue 2, Vsesoyuz. Nauch. Issled.
Inst. Nauch. Tekh. Inform. Ekonom. Promyshl. Stroit. Mater.
Moscow (in Russian).
Wei, B., Cao, H., & Song, S. (2010). Environmental resistance and
mechanical performance of basalt and glass fibers. Materials
Science and Engineering, 527, 4708–4715.
Type
article
File(s)![Thumbnail Image]()
Loading...
Name
Manuscript.pdf
Size
2.2 MB
Format
Adobe PDF
Checksum (MD5)
c8e5f9566cc75af5920aa5e7e12ead21