Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Enabling Dynamic and Intelligent Workflows for HPC, Data Analytics, and AI Convergence
 
  • Details

Enabling Dynamic and Intelligent Workflows for HPC, Data Analytics, and AI Convergence

Author(s)
Ejarque, Jorge  
Badia, Rosa M  
Albertin, Loic  
Aloisio, Giovanni  
Baglione, Enrico  
Becerra, Yolanda  
Boschert, Stefan  
Berlin, Julian Rodrigo  
D'Anca, Alessandro  
Elia, Donatello  
Exertier, François  
Fiore, Sandro  
Flich, Jose  
Folch, Arnau  
Gibbons, Steven J  
Koldunov, Nikolay  
Lordan, Francesc  
Lorito, Stefano  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia  
Løvholt, Finn  
Maciás, Jorge  
Marozzo, Fabrizio  
Michelini, Alberto  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia  
Monterrubio Veasco, Marisol  
Pienkowska, Marta  
de la Puente, Josep  
Queralt, Anna  
Quintana-Ortí, Enrique S  
Rodríguez, Juan E  
Romano, Fabrizio  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia  
Rossi, Riccardo  
Rybicki, Jedrzej  
Kupczyk, Miroslaw  
Selva, Jacopo  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia  
Talia, Domenico  
Tonini, Roberto  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia  
Trunfio, Paolo  
Volpe, Manuela  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia  
Language
English
Obiettivo Specifico
6T. Studi di pericolosità sismica e da maremoto
8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
4V. Processi pre-eruttivi
6V. Pericolosità vulcanica e contributi alla stima del rischio
3IT. Calcolo scientifico
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Journal
Future Generation Computer Systems  
Issue/vol(year)
/134 (2022)
ISSN
0167-739X
Publisher
Elsevier
Pages (printed)
414-429
Date Issued
April 20, 2022
DOI
10.1016/j.future.2022.04.014
Last version
https://arxiv.org/pdf/2204.09287.pdf
URI
https://www.earth-prints.org/handle/2122/16378
Subjects

High performance comp...

Distributed computing...

Parallel programming

HPC-DA-AI convergence...

Workflow development

Workflow orchestratio...

Abstract
The evolution of High-Performance Computing (HPC) platforms enables the
design and execution of progressively larger and more complex workflow
applications in these systems. The complexity comes not only from the number of
elements that compose the workflows but also from the type of computations they
perform. While traditional HPC workflows target simulations and modelling of
physical phenomena, current needs require in addition data analytics (DA) and
artificial intelligence (AI) tasks. However, the development of these workflows
is hampered by the lack of proper programming models and environments that
support the integration of HPC, DA, and AI, as well as the lack of tools to
easily deploy and execute the workflows in HPC systems. To progress in this
direction, this paper presents use cases where complex workflows are required
and investigates the main issues to be addressed for the HPC/DA/AI convergence.
Based on this study, the paper identifies the challenges of a new workflow
platform to manage complex workflows. Finally, it proposes a development
approach for such a workflow platform addressing these challenges in two
directions: first, by defining a software stack that provides the
functionalities to manage these complex workflows; and second, by proposing the
HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software
stack to facilitate the reusability of complex workflows in federated HPC
infrastructures. Proposals presented in this work are subject to study and
development as part of the EuroHPC eFlows4HPC project.
Type
article
File(s)
Loading...
Thumbnail Image
Name

Ejarque_FGCS_2021_manuscript.pdf

Description
Pre-print
Size

4.29 MB

Format

Adobe PDF

Checksum (MD5)

154cd32e4a2c886609561ce4a7595de4

Loading...
Thumbnail Image
Name

Article.pdf

Description
Restricted Paper
Size

2.41 MB

Format

Adobe PDF

Checksum (MD5)

29e096eaf9060073ab0903400c60e1b3

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback