Options
Near-field propagation of tsunamis from megathrust earthquakes
Author(s)
Language
English
Obiettivo Specifico
3.1. Fisica dei terremoti
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/34(2007)
Publisher
AGU
Pages (printed)
L14316
Issued date
July 27, 2007
Abstract
We investigate controls on tsunami generation and
propagation in the near-field of great megathrust earthquakes
using a series of numerical simulations of subduction and
tsunamigenesis on the Sumatran forearc. The Sunda
megathrust here is advanced in its seismic cycle and may be
ready for another great earthquake. We calculate the seafloor
displacements and tsunami wave heights for about 100
complex earthquake ruptures whose synthesis was informed
by reference to geodetic and stress accumulation studies.
Remarkably, results show that, for any near-field location:
(1) the timing of tsunami inundation is independent of slipdistribution
on the earthquake or even of its magnitude, and
(2) the maximum wave height is directly proportional to the
vertical coseismic displacement experienced at that location.
Both observations are explained by the dominance of long
wavelength crustal flexure in near-field tsunamigenesis. The
results show, for the first time, that a single estimate of vertical
coseismic displacement might provide a reliable short-term
forecast of the maximum height of tsunami waves.
propagation in the near-field of great megathrust earthquakes
using a series of numerical simulations of subduction and
tsunamigenesis on the Sumatran forearc. The Sunda
megathrust here is advanced in its seismic cycle and may be
ready for another great earthquake. We calculate the seafloor
displacements and tsunami wave heights for about 100
complex earthquake ruptures whose synthesis was informed
by reference to geodetic and stress accumulation studies.
Remarkably, results show that, for any near-field location:
(1) the timing of tsunami inundation is independent of slipdistribution
on the earthquake or even of its magnitude, and
(2) the maximum wave height is directly proportional to the
vertical coseismic displacement experienced at that location.
Both observations are explained by the dominance of long
wavelength crustal flexure in near-field tsunamigenesis. The
results show, for the first time, that a single estimate of vertical
coseismic displacement might provide a reliable short-term
forecast of the maximum height of tsunami waves.
References
Blewitt, G., C. Kreemer, W. C. Hammond, H.-P. Plag, S. Stein, and E. Okal
(2006), Rapid determination of earthquake magnitude using GPS for
tsunami warning systems, Geophys. Res. Lett., 33, L11309,
doi:10.1029/2006GL026145.
Briggs, R. W., et al. (2006), Deformation and slip along the Sunda megathrust
in the great 2005 Nias-Simeulue earthquake, Science, 311, 1897–
1901.
Chlieh, M., J.-P. Avouac, V. Hjorleifsdottir, T.-R. A. Song, C. Ji, K. Sieh,
A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock, and J. Galetzka (2007),
Coseismic slip and afterslip of the Great Mw9.15 Sumatra-Andaman
Earthquake of 2004, Bull. Seismol. Soc. Am., 97(1A), S152 – S173,
doi:10.1785/0120050631.
Geist, E. L. (2002), Complex earthquake rupture and local tsunamis,
J. Geophys. Res., 107(B5), 2086, doi:10.1029/2000JB000139.
Heinrich, P., A. Piatanesi, E. Okal, and H. He´bert (2000), Near-field modeling
of the July 17, 1998 tsunami in Papua New Guinea, Geophys. Res.
Lett., 27, 3037– 3040.
Mader, C. L. (2004), Numerical Modelling of Water Waves, CRC Press,
Boca Raton, Fla.
Mai, P. M., and G. C. Beroza (2002), A spatial random field model to
characterize complexity in earthquake slip, J. Geophys. Res., 107(B11),
2308, doi:10.1029/2001JB000588.
McCloskey, J., S. S. Nalbant, and S. Steacy (2005), Indonesian earthquake:
Earthquake risk from co-seismic stress, Nature, 434, 291.
Nalbant, S. S., S. Steacy, K. Sieh, D. Natawidjaja, and J. McCloskey
(2005), Earthquake risk on the Sunda Trench, Nature, 435, 756–757.
Natawidjaja, D. H., K. Sieh, S. N. Ward, H. Cheng, R. L. Edwards,
J. Galetzka, and B. W. Suwargadi (2004), Paleogeodetic records
of seismic and aseismic subduction from central Sumatran microatolls,
Indonesia, J. Geophys. Res., 109, B04306, doi:10.1029/2003JB002398.
Natawidjaja, D. H., K. Sieh, M. Chlieh, J. Galetzka, B. W. Suwargadi,
H. Cheng, R. L. Edwards, J.-P. Avouac, and S. N. Ward (2006), Source
parameters of the great Sumatran megathrust earthquakes of 1797 and
1833 inferred from coral microatolls, J. Geophys. Res., 111, B06403,
doi:10.1029/2005JB004025.
Okal, E., and C. Synolakis (2004), Source discriminants for near field
tsunamis, Geophys. J. Int., 158, 899–912.
Pelayo, A. M., and D. A. Wiens (1992), Tsunami earthquakes: Slow thrustfaulting
events in the accretionary wedge, J. Geophys. Res., 97, 15,321–
15,337.
Piatanesi, A., and S. Lorito (2007), Rupture process of the 2004 Sumatra-
Andaman earthquake from tsunami waveform inversion, Bull. Seismol.
Soc. Am., 97(1A), S223–S231, doi:10.1785/0120050627.
Pollitz, F. F., P. Banerjee, R. Bu¨rgmann, M. Hashimoto, and N. Choosakul
(2006), Stress changes along the Sunda trench following the 26 December
2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes,
Geophys. Res. Lett., 33, L06309, doi:10.1029/2005GL024558.
Prawirodirdjo, L., et al. (1997), Geodetic observations of interseismic strain
segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 24,
2601– 2604.
Satake, K. (2002), Tsunamis, in International Handbook of Earthquake and
Engineering Seismology, edited by W. H. K. Lee et al., pp. 437– 451,
Academic, San Diego, Calif.
Subarya, C., et al. (2006), Plate-boundary deformation associated with the
great Sumatra-Andaman earthquake, Nature, 440, 46– 51, doi:10.1038/
nature04522.
Vigny, C., et al. (2005), Insight into the 2004 Sumatra-Andaman earthquake
from GPS measurements in southeast Asia, Nature, 436, 201 – 206,
doi:10.1038/nature03937.
(2006), Rapid determination of earthquake magnitude using GPS for
tsunami warning systems, Geophys. Res. Lett., 33, L11309,
doi:10.1029/2006GL026145.
Briggs, R. W., et al. (2006), Deformation and slip along the Sunda megathrust
in the great 2005 Nias-Simeulue earthquake, Science, 311, 1897–
1901.
Chlieh, M., J.-P. Avouac, V. Hjorleifsdottir, T.-R. A. Song, C. Ji, K. Sieh,
A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock, and J. Galetzka (2007),
Coseismic slip and afterslip of the Great Mw9.15 Sumatra-Andaman
Earthquake of 2004, Bull. Seismol. Soc. Am., 97(1A), S152 – S173,
doi:10.1785/0120050631.
Geist, E. L. (2002), Complex earthquake rupture and local tsunamis,
J. Geophys. Res., 107(B5), 2086, doi:10.1029/2000JB000139.
Heinrich, P., A. Piatanesi, E. Okal, and H. He´bert (2000), Near-field modeling
of the July 17, 1998 tsunami in Papua New Guinea, Geophys. Res.
Lett., 27, 3037– 3040.
Mader, C. L. (2004), Numerical Modelling of Water Waves, CRC Press,
Boca Raton, Fla.
Mai, P. M., and G. C. Beroza (2002), A spatial random field model to
characterize complexity in earthquake slip, J. Geophys. Res., 107(B11),
2308, doi:10.1029/2001JB000588.
McCloskey, J., S. S. Nalbant, and S. Steacy (2005), Indonesian earthquake:
Earthquake risk from co-seismic stress, Nature, 434, 291.
Nalbant, S. S., S. Steacy, K. Sieh, D. Natawidjaja, and J. McCloskey
(2005), Earthquake risk on the Sunda Trench, Nature, 435, 756–757.
Natawidjaja, D. H., K. Sieh, S. N. Ward, H. Cheng, R. L. Edwards,
J. Galetzka, and B. W. Suwargadi (2004), Paleogeodetic records
of seismic and aseismic subduction from central Sumatran microatolls,
Indonesia, J. Geophys. Res., 109, B04306, doi:10.1029/2003JB002398.
Natawidjaja, D. H., K. Sieh, M. Chlieh, J. Galetzka, B. W. Suwargadi,
H. Cheng, R. L. Edwards, J.-P. Avouac, and S. N. Ward (2006), Source
parameters of the great Sumatran megathrust earthquakes of 1797 and
1833 inferred from coral microatolls, J. Geophys. Res., 111, B06403,
doi:10.1029/2005JB004025.
Okal, E., and C. Synolakis (2004), Source discriminants for near field
tsunamis, Geophys. J. Int., 158, 899–912.
Pelayo, A. M., and D. A. Wiens (1992), Tsunami earthquakes: Slow thrustfaulting
events in the accretionary wedge, J. Geophys. Res., 97, 15,321–
15,337.
Piatanesi, A., and S. Lorito (2007), Rupture process of the 2004 Sumatra-
Andaman earthquake from tsunami waveform inversion, Bull. Seismol.
Soc. Am., 97(1A), S223–S231, doi:10.1785/0120050627.
Pollitz, F. F., P. Banerjee, R. Bu¨rgmann, M. Hashimoto, and N. Choosakul
(2006), Stress changes along the Sunda trench following the 26 December
2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes,
Geophys. Res. Lett., 33, L06309, doi:10.1029/2005GL024558.
Prawirodirdjo, L., et al. (1997), Geodetic observations of interseismic strain
segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 24,
2601– 2604.
Satake, K. (2002), Tsunamis, in International Handbook of Earthquake and
Engineering Seismology, edited by W. H. K. Lee et al., pp. 437– 451,
Academic, San Diego, Calif.
Subarya, C., et al. (2006), Plate-boundary deformation associated with the
great Sumatra-Andaman earthquake, Nature, 440, 46– 51, doi:10.1038/
nature04522.
Vigny, C., et al. (2005), Insight into the 2004 Sumatra-Andaman earthquake
from GPS measurements in southeast Asia, Nature, 436, 201 – 206,
doi:10.1038/nature03937.
Type
article
File(s)
Loading...
Name
article_text_and_figure.pdf
Description
unformatted final version
Size
868.92 KB
Format
Adobe PDF
Checksum (MD5)
73f70207c769aa9179feed0f9068597c
No Thumbnail Available
Name
2007GL030494.pdf
Description
main article
Size
408.24 KB
Format
Adobe PDF
Checksum (MD5)
aa591f6cba9b0cc5c0d890a2a9895d59