Options
Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption
Author(s)
Language
English
Obiettivo Specifico
1V. Storia e struttura dei sistemi vulcanici
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/6 (2016)
Pages (printed)
32245
Issued date
2016
Abstract
Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with
large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a
magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical,
archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation
preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a
progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera
centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of
the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower
source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi
Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that
has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of
magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding
non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide
suggests that this behavior is common.
large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a
magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical,
archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation
preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a
progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera
centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of
the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower
source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi
Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that
has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of
magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding
non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide
suggests that this behavior is common.
References
References
1. Newhall, C. G. & Dzurisin, D. Historical Unrest at Large Calderas of the World. US Geol. Survey Bull 1855, 1108 pp (1988).
2. Smithsonian Institution, Global Volcanism Program, volcano.si.edu http://volcano.si.edu/list_volcano_holocene.cfm (2016).
3. Rosi, M. & Sbrana, A. The Phlegrean Fields. Quad Ric Sci CNR. Rome 114, 175 pp. (1987).
4. Orsi, G., de Vita, S. & Di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and
configuration. J. Volcanol. Geotherm. Res. 74, 179–214 (1996).
5. De Vivo, B. et al. New constraints on the pyroclastic eruption history of the Campanian volcanic plain (Italy). Mineral. Petrol. 73,
47–65 (2001).
6. Deino, A. L., Orsi, G., Piochi, M. & de Vita, S. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei
caldera – Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170 (2004).
7. Di Vito, M. A. et al. Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res.
91, 221− 246 (1999).
8. Di Vito, M., Lirer, L., Mastrolorenzo, G. & Rolandi, G. The 1538 Monte Nuovo eruption (Campi Flegrei, Italy). Bull. Volcanol. 49,
608–615 (1987).
9. Guidoboni, E. & Ciuccarelli, C. The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the
Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad). Bull. Volcanol. 73, 655–677 (2011).
10. Del Gaudio, C., Aquino, I., Ricciardi, G. P., Ricco, C. & Scandone, R. Unrest episodes at Campi Flegrei: a reconstruction of vertical
ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 185, 48–56 (2010).
11. Chiodini, G., Caliro, S., De Martino, P., Avino, R. & Gherardi, F. Early signals of new volcanic unrest at Campi Flegrei caldera?
Insights from geochemical data and physical simulations. Geology 40, 943–946 (2012).
12. Amoruso, A., Crescentini, L. & Sabbetta, I. Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent
(1980–2010) deformation history. J. Geophys. Res: Solid Earth 119, 858–879 (2014).
13. D’Auria, L. et al. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi
Flegrei caldera. Scientific Reports 5, doi: 10.1038/srep13100 (2015).
14. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F. & De Natale, G. Evidence for fluid migration as the source of deformation at Campi
Flegrei caldera (Italy). Geophys. Res. Lett. 33(1), doi: 10.1029/2005GL024904 (2006).
15. Giamminelli, R. Il centro antico di Pozzuoli. Rione Terra e Borgo. Sergio Civita publisher. Napoli (1987).
16. Giamminelli, R. Edilizia ed Urbanistica di Pozzuoli dal X alla metà del XVIII Secolo dai Documenti Iconografici. Bollettino Flegreo
3, 42–88 (1996).
17. Romano et al. Intersection of exogenous, endogenous and anthropogenic factors in the Holocene landscape: a study of the Naples
coastline during the last 6000 years. Quat. Int. 303, 107–119 (2013).
18. Alberti, L. Descrittione di tutta Italia, nella quale si contiene il sito di essa, l’origine et le Signorie delle Città et delle Castella. Bologna
(1550).
19. De Hollanda, F. De Pintura Antiga. Lisbon (1541).
20. Cartaro, M. Ager Puteolanus, Roma (1584).
21. Capaccio, G. C. La Vera Antichità di Pozzuolo. Napoli (1607).
22. Kircher, A. Mundus subterraneus, Amsterdam (1668).
23. Dvorak, J. J. & Dzurisin, D. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Rev. Geophys.
35(3), 343–384 (1997).
24. Battaglia, M. & Hill, D. P. Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera,
California, case study. Tectonophysics 471(1), pp. 45–57 (2009).
25. Dieterich, J. H. & Decker, R. W. Finite element modeling of surface deformation associated with volcanism. J. Geophys. Res. 80(29),
4094–4102 (1975).
26. De Natale, G. et al. The Campi Flegrei caldera: unrest mechanisms and hazards. Geol. Soc. of London, Sp. Publ. 269, 25–45 (2006).
27. Macedonio, G., Giudicepietro, F., D’Auria, L. & Martini, M. Sill intrusion as a source mechanism of unrest at volcanic calderas. J.
Geophys. Res: Solid Earth 119, 3986–4000 (2014).
28. Brown, M. Granite: From genesis to emplacement. Geological Society of America Bullettin 125, 1079–1113 (2013).
29. Auger, E., Gasparini, P., Virieux, J. & Zollo, A. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294(5546),
1510–1512 (2001).
30. Zollo, A. et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35(12) (2008).
31. De Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship
between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).
32. Di Renzo, V. et al. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol.
281(3–4), 227–241 (2011). 33. Piochi, M., Mastrolorenzo, G. & Pappalardo, L. Magma ascent and eruptive processes from textural and compositional features of
Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull. Volcanol. 67(7), pp. 663–678 (2005).
34. Arienzo, I., Mazzeo, F. C., Moretti, R., Cavallo, A. & D’Antonio, M. Open-system magma evolution and fluid transfer at Campi
Flegrei caldera (southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: the example of the Nisida
eruption. Chem. Geol. 427, 109–124 (2016).
35. Gudmundsson, A. Rock fractures in geological processes. Cambridge University Press (2011).
36. Corbi, F. et al. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Pl. Sci. Lett.
431, 287–293 (2015).
37. Morhange, C., Marriner, N., Laborel, J., Todesco, M. & Oberlin, C. Rapid sea-level movements and noneruptive crustal deformations
in the Phlegrean Fields caldera, Italy. Geology 34(2), 93–96 (2006).
38. Tonarini, S., D’Antonio, M., Di Vito, M. A., Orsi, G. & Carandente, A. Geochemical and B-Sr-Nd isotopic evidence for mingling and
mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy).
Lithos 107(3–4), 135–151 (2009).
39. Mazzeo, F. C. et al. Timescales of mixing from diffusion chronometry on alkali feldspar phenocrysts from the Agnano-Monte Spina
eruption (4.7 ka), Campi Flegrei (southern Italy). Rend. Online Soc. Geol. It. 35 (Suppl. 2), 175 (2015).
40. Perugini, D., De Campos, C. P., Petrelli, M. & Dingwell, D. B. Concentration variance decay during magma mixing: a volcanic
chronometer. Scientific Reports 5, 14225, http://doi.org/10.1038/srep14225 (2015).
41. Walker, G. P. L. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J. Geophys. Res. 89, 8407–8416 (1984).
42. Acocella, V., Di Lorenzo, R., Newhall, C. & Scandone, R. An overview of recent (1988 to 2014) caldera unrest: knowledge and
perspectives. Rev. Geophys. 53, doi: 10.1002/2015RG000492 (2015).
43. Nairn, I. A., McKee, C. O., Talai, B. & Wood, C. P. Geology and eruptove history of the Rabaul Caldera area, Papua New Guinea. J.
Volcanol. Geotherm. Res. 69(3), 255–284 (1995).
44. Battaglia, M., Cervelli, P. F. & Murray, J. R. dMODELS: A MATLAB software package for modeling crustal deformation near active
faults and volcanic centers. J. Volcanol. Geotherm. Res. 254, 1–4 (2013).
45. Bonnans, J. F., Gilbert, J. C., Lemaréchal, C. & Sagastizábal, C. A. Numerical Optimization: Theoretical and Practical Aspects, xiv+
490 pp., Springer, Berlin, doi: 10.1007/978-3-540-35447-5 (2006).
46. Bergstra, J. & Y. Bengio. Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13, 281–305 (2012).
47. McTigue, D. F. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J. Geophys.
Res. 92, 12,931–12, 940 (1987).
48. Yang, X., Davis, P. M. & Dieterich, J. H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a
model for volcanic stressing. J. Geophys. Res. 93, 4249–4257 (1988).
49. Fialko, Y., Khazan, Y. & Simons, M. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with
applications to volcano geodesy. Geophys. J. Int. 146, 181–190 (2001).
50. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75, 1135–1154 (1985).
51. Gordon, R., Stein, S., DeMets, C. & Argus, D. Statistical tests for closure of plate motion circuits. Geophys. Res. Lett. 14, 587–590
(1987).
1. Newhall, C. G. & Dzurisin, D. Historical Unrest at Large Calderas of the World. US Geol. Survey Bull 1855, 1108 pp (1988).
2. Smithsonian Institution, Global Volcanism Program, volcano.si.edu http://volcano.si.edu/list_volcano_holocene.cfm (2016).
3. Rosi, M. & Sbrana, A. The Phlegrean Fields. Quad Ric Sci CNR. Rome 114, 175 pp. (1987).
4. Orsi, G., de Vita, S. & Di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and
configuration. J. Volcanol. Geotherm. Res. 74, 179–214 (1996).
5. De Vivo, B. et al. New constraints on the pyroclastic eruption history of the Campanian volcanic plain (Italy). Mineral. Petrol. 73,
47–65 (2001).
6. Deino, A. L., Orsi, G., Piochi, M. & de Vita, S. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei
caldera – Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170 (2004).
7. Di Vito, M. A. et al. Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res.
91, 221− 246 (1999).
8. Di Vito, M., Lirer, L., Mastrolorenzo, G. & Rolandi, G. The 1538 Monte Nuovo eruption (Campi Flegrei, Italy). Bull. Volcanol. 49,
608–615 (1987).
9. Guidoboni, E. & Ciuccarelli, C. The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the
Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad). Bull. Volcanol. 73, 655–677 (2011).
10. Del Gaudio, C., Aquino, I., Ricciardi, G. P., Ricco, C. & Scandone, R. Unrest episodes at Campi Flegrei: a reconstruction of vertical
ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 185, 48–56 (2010).
11. Chiodini, G., Caliro, S., De Martino, P., Avino, R. & Gherardi, F. Early signals of new volcanic unrest at Campi Flegrei caldera?
Insights from geochemical data and physical simulations. Geology 40, 943–946 (2012).
12. Amoruso, A., Crescentini, L. & Sabbetta, I. Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent
(1980–2010) deformation history. J. Geophys. Res: Solid Earth 119, 858–879 (2014).
13. D’Auria, L. et al. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi
Flegrei caldera. Scientific Reports 5, doi: 10.1038/srep13100 (2015).
14. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F. & De Natale, G. Evidence for fluid migration as the source of deformation at Campi
Flegrei caldera (Italy). Geophys. Res. Lett. 33(1), doi: 10.1029/2005GL024904 (2006).
15. Giamminelli, R. Il centro antico di Pozzuoli. Rione Terra e Borgo. Sergio Civita publisher. Napoli (1987).
16. Giamminelli, R. Edilizia ed Urbanistica di Pozzuoli dal X alla metà del XVIII Secolo dai Documenti Iconografici. Bollettino Flegreo
3, 42–88 (1996).
17. Romano et al. Intersection of exogenous, endogenous and anthropogenic factors in the Holocene landscape: a study of the Naples
coastline during the last 6000 years. Quat. Int. 303, 107–119 (2013).
18. Alberti, L. Descrittione di tutta Italia, nella quale si contiene il sito di essa, l’origine et le Signorie delle Città et delle Castella. Bologna
(1550).
19. De Hollanda, F. De Pintura Antiga. Lisbon (1541).
20. Cartaro, M. Ager Puteolanus, Roma (1584).
21. Capaccio, G. C. La Vera Antichità di Pozzuolo. Napoli (1607).
22. Kircher, A. Mundus subterraneus, Amsterdam (1668).
23. Dvorak, J. J. & Dzurisin, D. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Rev. Geophys.
35(3), 343–384 (1997).
24. Battaglia, M. & Hill, D. P. Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera,
California, case study. Tectonophysics 471(1), pp. 45–57 (2009).
25. Dieterich, J. H. & Decker, R. W. Finite element modeling of surface deformation associated with volcanism. J. Geophys. Res. 80(29),
4094–4102 (1975).
26. De Natale, G. et al. The Campi Flegrei caldera: unrest mechanisms and hazards. Geol. Soc. of London, Sp. Publ. 269, 25–45 (2006).
27. Macedonio, G., Giudicepietro, F., D’Auria, L. & Martini, M. Sill intrusion as a source mechanism of unrest at volcanic calderas. J.
Geophys. Res: Solid Earth 119, 3986–4000 (2014).
28. Brown, M. Granite: From genesis to emplacement. Geological Society of America Bullettin 125, 1079–1113 (2013).
29. Auger, E., Gasparini, P., Virieux, J. & Zollo, A. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294(5546),
1510–1512 (2001).
30. Zollo, A. et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35(12) (2008).
31. De Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship
between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).
32. Di Renzo, V. et al. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol.
281(3–4), 227–241 (2011). 33. Piochi, M., Mastrolorenzo, G. & Pappalardo, L. Magma ascent and eruptive processes from textural and compositional features of
Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull. Volcanol. 67(7), pp. 663–678 (2005).
34. Arienzo, I., Mazzeo, F. C., Moretti, R., Cavallo, A. & D’Antonio, M. Open-system magma evolution and fluid transfer at Campi
Flegrei caldera (southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: the example of the Nisida
eruption. Chem. Geol. 427, 109–124 (2016).
35. Gudmundsson, A. Rock fractures in geological processes. Cambridge University Press (2011).
36. Corbi, F. et al. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Pl. Sci. Lett.
431, 287–293 (2015).
37. Morhange, C., Marriner, N., Laborel, J., Todesco, M. & Oberlin, C. Rapid sea-level movements and noneruptive crustal deformations
in the Phlegrean Fields caldera, Italy. Geology 34(2), 93–96 (2006).
38. Tonarini, S., D’Antonio, M., Di Vito, M. A., Orsi, G. & Carandente, A. Geochemical and B-Sr-Nd isotopic evidence for mingling and
mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy).
Lithos 107(3–4), 135–151 (2009).
39. Mazzeo, F. C. et al. Timescales of mixing from diffusion chronometry on alkali feldspar phenocrysts from the Agnano-Monte Spina
eruption (4.7 ka), Campi Flegrei (southern Italy). Rend. Online Soc. Geol. It. 35 (Suppl. 2), 175 (2015).
40. Perugini, D., De Campos, C. P., Petrelli, M. & Dingwell, D. B. Concentration variance decay during magma mixing: a volcanic
chronometer. Scientific Reports 5, 14225, http://doi.org/10.1038/srep14225 (2015).
41. Walker, G. P. L. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J. Geophys. Res. 89, 8407–8416 (1984).
42. Acocella, V., Di Lorenzo, R., Newhall, C. & Scandone, R. An overview of recent (1988 to 2014) caldera unrest: knowledge and
perspectives. Rev. Geophys. 53, doi: 10.1002/2015RG000492 (2015).
43. Nairn, I. A., McKee, C. O., Talai, B. & Wood, C. P. Geology and eruptove history of the Rabaul Caldera area, Papua New Guinea. J.
Volcanol. Geotherm. Res. 69(3), 255–284 (1995).
44. Battaglia, M., Cervelli, P. F. & Murray, J. R. dMODELS: A MATLAB software package for modeling crustal deformation near active
faults and volcanic centers. J. Volcanol. Geotherm. Res. 254, 1–4 (2013).
45. Bonnans, J. F., Gilbert, J. C., Lemaréchal, C. & Sagastizábal, C. A. Numerical Optimization: Theoretical and Practical Aspects, xiv+
490 pp., Springer, Berlin, doi: 10.1007/978-3-540-35447-5 (2006).
46. Bergstra, J. & Y. Bengio. Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13, 281–305 (2012).
47. McTigue, D. F. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J. Geophys.
Res. 92, 12,931–12, 940 (1987).
48. Yang, X., Davis, P. M. & Dieterich, J. H. Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a
model for volcanic stressing. J. Geophys. Res. 93, 4249–4257 (1988).
49. Fialko, Y., Khazan, Y. & Simons, M. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with
applications to volcano geodesy. Geophys. J. Int. 146, 181–190 (2001).
50. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75, 1135–1154 (1985).
51. Gordon, R., Stein, S., DeMets, C. & Argus, D. Statistical tests for closure of plate motion circuits. Geophys. Res. Lett. 14, 587–590
(1987).
Type
article
File(s)
No Thumbnail Available
Name
di_di vito et al 2016 nsr srep32245.pdf
Size
1.82 MB
Format
Adobe PDF
Checksum (MD5)
1c8f76fb619c374612a9093858a99131