Options
S–Cl–F degassing pattern of water-rich alkali basalt: Modelling and relationship with eruption styles on Mount Etna volcano
Language
English
Status
Published
Peer review journal
Yes
Title of the book
Issue/vol(year)
/248 (2006)
Publisher
Elsevier
Pages (printed)
772-786
Issued date
2006
Alternative Location
Abstract
Our knowledge of the degassing pattern of sulphur, chlorine and fluorine during ascent and eruption of basaltic magmas is still
fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl
and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive
styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched
explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from
the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of
melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase
during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that
sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt
ascent and are respectively degassed at >95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas
compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the
volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions
(S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases
enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the
central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl
evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to
increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained
by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth
below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma
vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during
non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich
bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations
made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.
fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl
and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive
styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched
explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from
the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of
melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase
during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that
sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt
ascent and are respectively degassed at >95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas
compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the
volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions
(S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases
enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the
central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl
evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to
increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained
by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth
below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma
vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during
non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich
bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations
made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.
References
[1] M.R. Carroll, J.D. Webster, Solubility of sulfur, noble gases,
nitrogen, chlorine, and fluorine in magmas, in: M.R. Carroll, J.R.
Holloway (Eds.), Volatiles in Magmas, vol. 30, Mineral. Soc.
Amer., Washington, DC, 1994, pp. 231–279.
[2] A. Robock, C. Oppenheimer, Volcanism and the Earth's Atmosphere,
AGU (Geophysical Monograph Series), vol. 139,
2003, p. 360.
[3] J.W. Hedenquist, J.B. Lowenstern, The role of magma in the
formation of hydrothermal ore deposits, Nature 370 (1994)
519–527.
[4] I.A. Menyailov, Prediction of eruptions using changes in composition
of volcanic gases, Bull. Volcanol. 39 (1975) 112–125.
[5] P. Allard, S. Alparone, M. Amore, N. Bruno, L. Brusca, M.
Burton, T. Caltabiano, M. Mattia, F. Mure, E. Privitera, R.
Romano, M. Rossi, T. Sgroi, L. Villari, Short-term variations in magma dynamics at mount Etna detected by combined
geochemical and geophysical monitoring (August–November
2000), European Geophys. Soc. Assembly, Nice, March 25–30
2001.
[6] A.T. Anderson, Chlorine, sulfur and water in magmas and
oceans, Am. Bull. Geol. Soc. 85 (1974) 1485–1492.
[7] D.W. Muenow, D.G. Graham, N.W.K. Liu, J.R. Delaney, The
abundance of volatiles in Hawaiian tholeiitic submarine basalts,
Earth Planet. Sci. Lett. 42 (1979) 71–76.
[8] T. Thordarson, S. Self, Sulfur, chlorine and fluorine degassing
and atmospheric loading by the Roza eruption, Columbia River
Basalt Group,Washington, USA, J. Volcanol. Geotherm. Res. 74
(1996) 49–73.
[9] T. Thordarson, S. Self, N. Oskarsson, T. Hulsechosch, Sulfur,
chlorine and fluorine degassing and atmospheric loading by the
1783–1784 AD (Skaftar Fires) eruption in Iceland, Bull.
Volcanol. 58 (1996) 205–225.
[10] N. Métrich, A. Bertagnini, P. Landi, M. Rosi, Crystallization
driven by decompression and water loss at Stromboli volcano
(Aeolian Islands, Italy), J. Petrol. 42 (2001) 1471–1490.
[11] N. Métrich, P. Allard, N. Spilliaert, D. Andronico, M. Burton,
2001 flank eruption of the alkali- and volatile-rich primitive
basalt responsible for Mount Etna's evolution in the last three
decades, Earth Planet. Sci. Lett. 228 (2004) 1–17.
[12] N. Spilliaert, P. Allard, N. Métrich, A.V. Sobolev, Melt inclusion
record of the conditions of ascent, degassing and extrusion of
volatile-rich alkali basalt during the powerful 2002 flank eruption
of Mount Etna (Italy), J. Geophys. Res. 111 (2006) B04203,
doi:10.1029/2005/JB003934.
[13] N. Spilliaert, Dynamiques de remontée, dégazage et éruption des
magmas basaltiques par les inclusions vitreuses et modelisation
des processus dans le cas de l'Etna, 2000–2002, PhD Thesis
IPG-Paris, 2006, pp 250.
[14] J.R. Delaney, D.W. Muenow, D.G. Graham, Abundance and
distribution of water, carbon and sulfur in the glassy rims of
submarine pillow basalts, Geochim. Cosmochim. Acta 42 (1978)
581–594.
[15] C.D. Byers, D.W. Muenow, M.O. Garcia, Volatiles in basalts and
andesites from Galapagos spreading center, 85° to 86°, Geochim.
Cosmochim. Acta 47 (1983) 1551–1558.
[16] P.J. Michael, J.G. Schilling, Chlorine in mid-ocean ridge
magmas: evidence for assimilation of seawater-influenced
components, Geochim. Cosmochim. Acta 53 (1989) 3131–3143.
[17] H. Bureau, N. Metrich, M. Semet, T. Staudacher, Fluid–magma
decoupling in a hot spot volcano, Geophys. Res. Lett. 26 (1999)
3501–3504.
[18] J.E. Dixon, D.A Clague, P. Wallace, R. Poreda, Volatiles in alkali
basalts from the North Arch Volcanic Field, Hawaii: extensive
degassing of deep submarine-erupted alkalic series lavas, J. Petrol.
38 (1997) 911–939.
[19] C.K. Unni, J.G. Schilling, Cl and Br degassing by volcanism
along the Reykjanes Ridge and Iceland, Nature 272 (1978)
19–23.
[20] T.M. Gerlach, Exsolution of H2O, CO2, and S during eruptive
episodes at Kilauea volcano, Hawaii, J. Geophys. Res. 91 (12)
(1986) 177–185.
[21] E.B. Watson, Diffusion in volatile-bearing magmas, in: M.R.
Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, vol. 30,
Mineral. Soc. Amer., Washington, DC, 1994, pp. 371–409.
[22] P.Wallace,Volatiles in subduction zonemagmas: concentrations and
fluxes based on melt inclusion and volcanic gas data, J. Volcanol.
Geotherm. Res. 140 (2005) 217–240.
[23] P. Allard, P. Jean-Baptiste,W. D'Alessandro, F. Parello, B. Parisi,
C. Flehoc, Mantle-derived helium and carbon in groundwaters
and gases of Mount Etna, Italy, Earth Planet. Sci. Lett. 148 (3–4)
(1997) 501–516.
[24] N.Métrich, R. Clocchiatti,M.Mosbah, M. Chaussidon, The 1989–
1990 activity of Etna magma mingling and ascent of H2O–Cl–Srich
basaltic magma. Evidence from melt inclusions, J. Volcanol.
Geotherm. Res. 59 (1993) 131–144.
[25] P. Allard, S. Alparone, D. Andronico, M. Burton, L. Lodato, F.
Mure, T. Zgroi, Source process of cyclic fire fountaining at
Mount Etna in 2000: a multidisciplinary study of the June 14
(63rd) event, Geophys. Res. Abstr. 5 (2003) 13079.
[26] S. La Delfa, G. Patane, R. Clocchiatti, J.-L. Joron, J.-C. Tanguy,
The February 1999 fissure eruption of Mt Etna: inferredmechanism
from seismological and geochemical data, J. Volcanol. Geotherm.
Res. 105 (2001) 121–139.
[27] R. Moretti, Volatiles solubility with particular regard to sulphur
species: theoretical aspects and application to Etnean volcanics,
PhD Thesis, Univ. Pisa, Italy, 2001.
[28] P. Allard, A. Aiuppa, S. Bellomo, N. Bruno, M. Burton, T.
Caltabiano, C. Federico, E. Longo, F. Mure, Evolution of magma
degassing during the July–August 2001 eruption of Mount Etna
tracked by COSPEC–FTIR remote sensing and filter pack
sampling, Proceed. GNV Assembly, Roma, Italy, October 9–11
2001.
[29] M. Burton, P. Allard, F. Mure, C. Oppenheimer, FTIR remote
sensing of fractional magma degassing at Mt. Etna, Sicily, Spec.
Publ. - Geol. Soc. 213 (2003) 281–293.
[30] A. Aiuppa, C. Federico, G. Giudice, S. Gurrieri, A. Paonita, M.
Valenza, Plume chemistry provides insights into mechanisms of
sulfur and halogen degassing in basaltic volcanoes, Earth Planet.
Sci. Lett. 222 (2004) 469–483.
[31] P. Allard, M. Burton, F. Mure, Spectroscopic evidence for a lava
fountain driven by previously accumulated magmatic gas, Nature
433 (2005) 407–410.
[32] D. Andronico, et al., A multi-disciplinary study of the 2002–03
Etna eruption: insights into a complex plumbing system, Bull.
Volcanol. 67 (2005) 314–330.
[33] P. Francis, A. Maciejewski, C. Chaffin, C. Oppenheimer, T.
Caltabiano, SO2 and HCl ratios in the plumes of Mount Etna and
Vulcano determined by Fourier transform spectroscopy, Geophys.
Res. Lett. 22 (1995) 1717–1720.
[34] M. Pennisi, M.-F. Le Cloarec, Variations of Cl, F, and S in Mount
Etna's plume, Italy, between 1992 and 1995, J. Geophys. Res.
103 (B3) (1998) 5061.
[35] D.K. Chester, A.M. Duncan, J.E. Guest, C.R.J. Kilburn, Mount
Etna: the Anatomy of a Volcano, Chapman and Hall, London,
1985 404 pp.
[36] S. Branca, P. Del Carlo, Eruption of Mt. Etna during the past
3200 years: a revised compilation integrating the historical and
stratigraphic records, in: A. Bonaccorso, B. Calvari, M. Coltelli,
C. Del Negro, S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory,
Geophysical Monograph Series, vol. 143, AGU, Washington
DC, 2004, pp. 49–64.
[37] P. Allard, Endogenous magma degassing and storage at Mount
Etna, Geophys. Res. Lett. 24 (1997) 2219–2222.
[38] T. Caltabiano, M. Burton, S. Giammanco, P. Allard, N. Bruno, F.
Mure, R. Romano, Volcanic gas emission from the summit
craters and flanks of Mt. Etna, 1987–2000, in: A. Bonaccorso, B.
Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), Mt. Etna:
Volcano Laboratory, Geophysical Monograph Series, vol. 143,
AGU, Washington DC, 2004, pp. 111–128.
[39] B. Bencke, M. Neri, The July–August 2001 eruption of Mt Etna
(Sicily), Bull. Volcanol. 65 (2003) 461–476.
[40] R. Clocchiatti, M. Condomines, N. Guenot, J.-C. Tanguy,
Magma changes at Mount Etna: the 2001 and 2002–2003
eruptions, Earth Planet. Sci. Lett. 226 (2004) 397–414.
[41] A. Bonaccorso, M. Aloisi, M. Mattia, Dike emplacement
forerunning the Etna July 2001 eruption modelled through
continuous tilt and GPS data, Geophys. Res. Lett. 29 (2002) 13.
[42] D. Patane, P. De Gori, C. Chiarabba, A. Bonaccorso, Magma
ascent and the pressurization of Mount Etna's volcanic system,
Science 299 (2003) 2061–2063.
[43] R.A. Corsaro, M. Pompilio, Dynamics of magmas at Mount
Etna, in: A. Bonaccorso, B. Calvari, M. Coltelli, C. Del Negro,
S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory, Geophysical
Monograph Series, vol. 143, AGU, Washington DC, 2004,
pp. 91–110.
[44] M. Mosbah, N. Métrich, P. Massiot, PIGME fluorine determination
using a nuclear microprobe with application to glass
inclusions, Nucl. Instrum. Methods Phys. Res., B 58 (1991)
227–231.
[45] S.M. Straub, G.D. Layne, The systematics of chlorine, fluorine
and water in Izu arc front volcanic rocks: Implications for volatile
recycling in subduction zones, Geochim. Cosmochim. Acta 67
(2003) 4179–4203.
[46] J.C. Tanguy, R. Clocchiatti, The Etnean lavas, 1977–1983:
petrology and mineralogy, Bull. Volcanol. 47–4 (1984) 879–894.
[47] N. Metrich, R. Clocchiatti, Melt inclusion investigation of the
volatile behavior in historic alkaline magmas of Etna, Bull.
Volcanol. 51 (1989) 185–198.
[48] R. Clocchiatti, N. Metrich, Temoignages de la contamination
dans les produits des eruptions explosives des Mts. Silvestri
(1892) et Mts. Rossi (1669), Mt. Etna, Bull. Volcanol. 47/2
(1984) 909–928.
[49] S. Newman, J.B. Lowenstern, Volatilecalc: a silicate melt–H2O–
CO2 solution model written in VISUAL BASIC Excel, Comput.
Geosci. 28 (5) (2002) 597–604.
[50] R.A. Corsaro, M. Pompilio, Buoyancy-controlled eruption of
magmas at Mt Etna, Terra Nova 16 (1) (2004) 16–22.
[51] N. Métrich, P. Schiano, R. Clocchiatti, R. Maury, Transfer of
sulfur in subduction settings: an example from Batan Island
(Luzon volcanic arc, Philippines), Earth Planet. Sci. Lett. 167
(1999) 1–14.
[52] P. Allard, Geochimie isotopique et origine de l'eau, du carbone et
du soufre dans les gaz volcaniques: Zones de rift, marges
continentales et arcs insulaires, PhD Thesis, Paris 7 Univ. (1986)
pp. 340.
[53] R. Moretti, P. Papale, On the oxidation state and volatile behavior
in multi-component gas phase equilibria, Chem. Geol. 213 (1–3)
(2004) 265–280.
[54] P.J. Jugo, R.W. Luth, J.P. Richards, Experimental data on the
speciation of sulfur as a function of oxygen fugacity in basaltic
melts, Geochim. Cosmochim. Acta 69 (2005) 497–503.
[55] N. Métrich, R. Clocchiatti, Sulfur abundance and its speciation in
oxidized alkaline melts, Geochim. Cosmochim. Acta 60 (1996)
4151–4160.
[56] N. Métrich, M. Bonnin-Mosbah, J. Susini, B. Menez, L. Galoisy,
Presence of sulphite (SIV) in magmas: implications for volcanic
sulphur emissions, Geophys. Res. Lett. 29/11 (2002) 33/1–33/4.
[57] J.G. Schilling, M.B. Bergeron, R. Evans, Halogens in the mantle
beneath the North Atlantic, R. Soc. Phil. Trans., A 297 (1980)
147–178.
[58] T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano,
Nature 313 (1985) 273–277.
[59] J.E. Gardner, A. Burgisser,M. Hort, M. Rutherford, Experimental
and model constraints on degassing of magma during ascent and
eruption, in: C. Siebe, J.L Macias, G.J. Aguirre-Diaz (Eds.),
Neogene–Quaternary Continental Margin Volcanism: A Perspective
from Mexico: Geol. Soc. Amer. Spec. Paper 402, Penrose
Conf. Series, 2006, pp. 99–113, doi:10.1130/2006.2402(04).
[60] A. Jambon, Earth degassing and large-scale geochemical cycling
of volatile elements, in: M.R. Carroll, J.R. Holloway (Eds.),
Volatiles in Magmas, vol. 30, Mineral. Soc. Amer., Washington,
DC, 1994, pp. 479–509.
[61] H. Bureau, H. Keppler, N. Metrich, Volcanic degassing of
bromine and iodine: experimental fluid/melt partitioning data and
applications to stratospheric chemistry, Earth Planet. Sci. Lett.
183 (2000) 51–60.
[62] E. Lo Giudice, R. Rasa, Very shallow earthquake and brittle
deformation in active volcanic areas: the Etnean region as an
example, Tectonophysics 202 (1992) 257–268.
[63] C. Klug, K.V. Cashman, Permeability development in vesiculating-
magmas: implications for fragmentation, Bull. Volcanol. 58
(1996) 87–100.
[64] J. Blower, Factors controlling permeability–porosity relationships
in magma, Bull. Volcanol. 63 (2001) 497–504.
[65] M. Burton, H. Mader, M. Polacci, P. Allard, Constraints on the
dynamics of degassing in basaltic systems, Eos, Trans. - AGU 86
(52) (2005) (Fall Meet. Suppl., Abstract V13G-01.
[66] R.S.J. Sparks, The dynamics of bubble formation and growth in
magma: a review and analysis, J. Volcanol. Geotherm. Res. 3
(1978) 1–37.
[67] K. Kazahaya, H. Shinohara, G. Saito, Excessive degassing of
Izu–Oshima volcano: magma convection in a conduit, Bull.
Volcanol. 56 (1994) 207–216.
[68] H.J. Rymer, C.A. Locke, J.B. Murray, Magma movement in Etna
volcano associated with the major 1991–1993 lava eruption:
evidence from gravity and deformation, Bull. Volcanol. 57
(1995) 451–461.
nitrogen, chlorine, and fluorine in magmas, in: M.R. Carroll, J.R.
Holloway (Eds.), Volatiles in Magmas, vol. 30, Mineral. Soc.
Amer., Washington, DC, 1994, pp. 231–279.
[2] A. Robock, C. Oppenheimer, Volcanism and the Earth's Atmosphere,
AGU (Geophysical Monograph Series), vol. 139,
2003, p. 360.
[3] J.W. Hedenquist, J.B. Lowenstern, The role of magma in the
formation of hydrothermal ore deposits, Nature 370 (1994)
519–527.
[4] I.A. Menyailov, Prediction of eruptions using changes in composition
of volcanic gases, Bull. Volcanol. 39 (1975) 112–125.
[5] P. Allard, S. Alparone, M. Amore, N. Bruno, L. Brusca, M.
Burton, T. Caltabiano, M. Mattia, F. Mure, E. Privitera, R.
Romano, M. Rossi, T. Sgroi, L. Villari, Short-term variations in magma dynamics at mount Etna detected by combined
geochemical and geophysical monitoring (August–November
2000), European Geophys. Soc. Assembly, Nice, March 25–30
2001.
[6] A.T. Anderson, Chlorine, sulfur and water in magmas and
oceans, Am. Bull. Geol. Soc. 85 (1974) 1485–1492.
[7] D.W. Muenow, D.G. Graham, N.W.K. Liu, J.R. Delaney, The
abundance of volatiles in Hawaiian tholeiitic submarine basalts,
Earth Planet. Sci. Lett. 42 (1979) 71–76.
[8] T. Thordarson, S. Self, Sulfur, chlorine and fluorine degassing
and atmospheric loading by the Roza eruption, Columbia River
Basalt Group,Washington, USA, J. Volcanol. Geotherm. Res. 74
(1996) 49–73.
[9] T. Thordarson, S. Self, N. Oskarsson, T. Hulsechosch, Sulfur,
chlorine and fluorine degassing and atmospheric loading by the
1783–1784 AD (Skaftar Fires) eruption in Iceland, Bull.
Volcanol. 58 (1996) 205–225.
[10] N. Métrich, A. Bertagnini, P. Landi, M. Rosi, Crystallization
driven by decompression and water loss at Stromboli volcano
(Aeolian Islands, Italy), J. Petrol. 42 (2001) 1471–1490.
[11] N. Métrich, P. Allard, N. Spilliaert, D. Andronico, M. Burton,
2001 flank eruption of the alkali- and volatile-rich primitive
basalt responsible for Mount Etna's evolution in the last three
decades, Earth Planet. Sci. Lett. 228 (2004) 1–17.
[12] N. Spilliaert, P. Allard, N. Métrich, A.V. Sobolev, Melt inclusion
record of the conditions of ascent, degassing and extrusion of
volatile-rich alkali basalt during the powerful 2002 flank eruption
of Mount Etna (Italy), J. Geophys. Res. 111 (2006) B04203,
doi:10.1029/2005/JB003934.
[13] N. Spilliaert, Dynamiques de remontée, dégazage et éruption des
magmas basaltiques par les inclusions vitreuses et modelisation
des processus dans le cas de l'Etna, 2000–2002, PhD Thesis
IPG-Paris, 2006, pp 250.
[14] J.R. Delaney, D.W. Muenow, D.G. Graham, Abundance and
distribution of water, carbon and sulfur in the glassy rims of
submarine pillow basalts, Geochim. Cosmochim. Acta 42 (1978)
581–594.
[15] C.D. Byers, D.W. Muenow, M.O. Garcia, Volatiles in basalts and
andesites from Galapagos spreading center, 85° to 86°, Geochim.
Cosmochim. Acta 47 (1983) 1551–1558.
[16] P.J. Michael, J.G. Schilling, Chlorine in mid-ocean ridge
magmas: evidence for assimilation of seawater-influenced
components, Geochim. Cosmochim. Acta 53 (1989) 3131–3143.
[17] H. Bureau, N. Metrich, M. Semet, T. Staudacher, Fluid–magma
decoupling in a hot spot volcano, Geophys. Res. Lett. 26 (1999)
3501–3504.
[18] J.E. Dixon, D.A Clague, P. Wallace, R. Poreda, Volatiles in alkali
basalts from the North Arch Volcanic Field, Hawaii: extensive
degassing of deep submarine-erupted alkalic series lavas, J. Petrol.
38 (1997) 911–939.
[19] C.K. Unni, J.G. Schilling, Cl and Br degassing by volcanism
along the Reykjanes Ridge and Iceland, Nature 272 (1978)
19–23.
[20] T.M. Gerlach, Exsolution of H2O, CO2, and S during eruptive
episodes at Kilauea volcano, Hawaii, J. Geophys. Res. 91 (12)
(1986) 177–185.
[21] E.B. Watson, Diffusion in volatile-bearing magmas, in: M.R.
Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, vol. 30,
Mineral. Soc. Amer., Washington, DC, 1994, pp. 371–409.
[22] P.Wallace,Volatiles in subduction zonemagmas: concentrations and
fluxes based on melt inclusion and volcanic gas data, J. Volcanol.
Geotherm. Res. 140 (2005) 217–240.
[23] P. Allard, P. Jean-Baptiste,W. D'Alessandro, F. Parello, B. Parisi,
C. Flehoc, Mantle-derived helium and carbon in groundwaters
and gases of Mount Etna, Italy, Earth Planet. Sci. Lett. 148 (3–4)
(1997) 501–516.
[24] N.Métrich, R. Clocchiatti,M.Mosbah, M. Chaussidon, The 1989–
1990 activity of Etna magma mingling and ascent of H2O–Cl–Srich
basaltic magma. Evidence from melt inclusions, J. Volcanol.
Geotherm. Res. 59 (1993) 131–144.
[25] P. Allard, S. Alparone, D. Andronico, M. Burton, L. Lodato, F.
Mure, T. Zgroi, Source process of cyclic fire fountaining at
Mount Etna in 2000: a multidisciplinary study of the June 14
(63rd) event, Geophys. Res. Abstr. 5 (2003) 13079.
[26] S. La Delfa, G. Patane, R. Clocchiatti, J.-L. Joron, J.-C. Tanguy,
The February 1999 fissure eruption of Mt Etna: inferredmechanism
from seismological and geochemical data, J. Volcanol. Geotherm.
Res. 105 (2001) 121–139.
[27] R. Moretti, Volatiles solubility with particular regard to sulphur
species: theoretical aspects and application to Etnean volcanics,
PhD Thesis, Univ. Pisa, Italy, 2001.
[28] P. Allard, A. Aiuppa, S. Bellomo, N. Bruno, M. Burton, T.
Caltabiano, C. Federico, E. Longo, F. Mure, Evolution of magma
degassing during the July–August 2001 eruption of Mount Etna
tracked by COSPEC–FTIR remote sensing and filter pack
sampling, Proceed. GNV Assembly, Roma, Italy, October 9–11
2001.
[29] M. Burton, P. Allard, F. Mure, C. Oppenheimer, FTIR remote
sensing of fractional magma degassing at Mt. Etna, Sicily, Spec.
Publ. - Geol. Soc. 213 (2003) 281–293.
[30] A. Aiuppa, C. Federico, G. Giudice, S. Gurrieri, A. Paonita, M.
Valenza, Plume chemistry provides insights into mechanisms of
sulfur and halogen degassing in basaltic volcanoes, Earth Planet.
Sci. Lett. 222 (2004) 469–483.
[31] P. Allard, M. Burton, F. Mure, Spectroscopic evidence for a lava
fountain driven by previously accumulated magmatic gas, Nature
433 (2005) 407–410.
[32] D. Andronico, et al., A multi-disciplinary study of the 2002–03
Etna eruption: insights into a complex plumbing system, Bull.
Volcanol. 67 (2005) 314–330.
[33] P. Francis, A. Maciejewski, C. Chaffin, C. Oppenheimer, T.
Caltabiano, SO2 and HCl ratios in the plumes of Mount Etna and
Vulcano determined by Fourier transform spectroscopy, Geophys.
Res. Lett. 22 (1995) 1717–1720.
[34] M. Pennisi, M.-F. Le Cloarec, Variations of Cl, F, and S in Mount
Etna's plume, Italy, between 1992 and 1995, J. Geophys. Res.
103 (B3) (1998) 5061.
[35] D.K. Chester, A.M. Duncan, J.E. Guest, C.R.J. Kilburn, Mount
Etna: the Anatomy of a Volcano, Chapman and Hall, London,
1985 404 pp.
[36] S. Branca, P. Del Carlo, Eruption of Mt. Etna during the past
3200 years: a revised compilation integrating the historical and
stratigraphic records, in: A. Bonaccorso, B. Calvari, M. Coltelli,
C. Del Negro, S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory,
Geophysical Monograph Series, vol. 143, AGU, Washington
DC, 2004, pp. 49–64.
[37] P. Allard, Endogenous magma degassing and storage at Mount
Etna, Geophys. Res. Lett. 24 (1997) 2219–2222.
[38] T. Caltabiano, M. Burton, S. Giammanco, P. Allard, N. Bruno, F.
Mure, R. Romano, Volcanic gas emission from the summit
craters and flanks of Mt. Etna, 1987–2000, in: A. Bonaccorso, B.
Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), Mt. Etna:
Volcano Laboratory, Geophysical Monograph Series, vol. 143,
AGU, Washington DC, 2004, pp. 111–128.
[39] B. Bencke, M. Neri, The July–August 2001 eruption of Mt Etna
(Sicily), Bull. Volcanol. 65 (2003) 461–476.
[40] R. Clocchiatti, M. Condomines, N. Guenot, J.-C. Tanguy,
Magma changes at Mount Etna: the 2001 and 2002–2003
eruptions, Earth Planet. Sci. Lett. 226 (2004) 397–414.
[41] A. Bonaccorso, M. Aloisi, M. Mattia, Dike emplacement
forerunning the Etna July 2001 eruption modelled through
continuous tilt and GPS data, Geophys. Res. Lett. 29 (2002) 13.
[42] D. Patane, P. De Gori, C. Chiarabba, A. Bonaccorso, Magma
ascent and the pressurization of Mount Etna's volcanic system,
Science 299 (2003) 2061–2063.
[43] R.A. Corsaro, M. Pompilio, Dynamics of magmas at Mount
Etna, in: A. Bonaccorso, B. Calvari, M. Coltelli, C. Del Negro,
S. Falsaperla (Eds.), Mt. Etna: Volcano Laboratory, Geophysical
Monograph Series, vol. 143, AGU, Washington DC, 2004,
pp. 91–110.
[44] M. Mosbah, N. Métrich, P. Massiot, PIGME fluorine determination
using a nuclear microprobe with application to glass
inclusions, Nucl. Instrum. Methods Phys. Res., B 58 (1991)
227–231.
[45] S.M. Straub, G.D. Layne, The systematics of chlorine, fluorine
and water in Izu arc front volcanic rocks: Implications for volatile
recycling in subduction zones, Geochim. Cosmochim. Acta 67
(2003) 4179–4203.
[46] J.C. Tanguy, R. Clocchiatti, The Etnean lavas, 1977–1983:
petrology and mineralogy, Bull. Volcanol. 47–4 (1984) 879–894.
[47] N. Metrich, R. Clocchiatti, Melt inclusion investigation of the
volatile behavior in historic alkaline magmas of Etna, Bull.
Volcanol. 51 (1989) 185–198.
[48] R. Clocchiatti, N. Metrich, Temoignages de la contamination
dans les produits des eruptions explosives des Mts. Silvestri
(1892) et Mts. Rossi (1669), Mt. Etna, Bull. Volcanol. 47/2
(1984) 909–928.
[49] S. Newman, J.B. Lowenstern, Volatilecalc: a silicate melt–H2O–
CO2 solution model written in VISUAL BASIC Excel, Comput.
Geosci. 28 (5) (2002) 597–604.
[50] R.A. Corsaro, M. Pompilio, Buoyancy-controlled eruption of
magmas at Mt Etna, Terra Nova 16 (1) (2004) 16–22.
[51] N. Métrich, P. Schiano, R. Clocchiatti, R. Maury, Transfer of
sulfur in subduction settings: an example from Batan Island
(Luzon volcanic arc, Philippines), Earth Planet. Sci. Lett. 167
(1999) 1–14.
[52] P. Allard, Geochimie isotopique et origine de l'eau, du carbone et
du soufre dans les gaz volcaniques: Zones de rift, marges
continentales et arcs insulaires, PhD Thesis, Paris 7 Univ. (1986)
pp. 340.
[53] R. Moretti, P. Papale, On the oxidation state and volatile behavior
in multi-component gas phase equilibria, Chem. Geol. 213 (1–3)
(2004) 265–280.
[54] P.J. Jugo, R.W. Luth, J.P. Richards, Experimental data on the
speciation of sulfur as a function of oxygen fugacity in basaltic
melts, Geochim. Cosmochim. Acta 69 (2005) 497–503.
[55] N. Métrich, R. Clocchiatti, Sulfur abundance and its speciation in
oxidized alkaline melts, Geochim. Cosmochim. Acta 60 (1996)
4151–4160.
[56] N. Métrich, M. Bonnin-Mosbah, J. Susini, B. Menez, L. Galoisy,
Presence of sulphite (SIV) in magmas: implications for volcanic
sulphur emissions, Geophys. Res. Lett. 29/11 (2002) 33/1–33/4.
[57] J.G. Schilling, M.B. Bergeron, R. Evans, Halogens in the mantle
beneath the North Atlantic, R. Soc. Phil. Trans., A 297 (1980)
147–178.
[58] T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano,
Nature 313 (1985) 273–277.
[59] J.E. Gardner, A. Burgisser,M. Hort, M. Rutherford, Experimental
and model constraints on degassing of magma during ascent and
eruption, in: C. Siebe, J.L Macias, G.J. Aguirre-Diaz (Eds.),
Neogene–Quaternary Continental Margin Volcanism: A Perspective
from Mexico: Geol. Soc. Amer. Spec. Paper 402, Penrose
Conf. Series, 2006, pp. 99–113, doi:10.1130/2006.2402(04).
[60] A. Jambon, Earth degassing and large-scale geochemical cycling
of volatile elements, in: M.R. Carroll, J.R. Holloway (Eds.),
Volatiles in Magmas, vol. 30, Mineral. Soc. Amer., Washington,
DC, 1994, pp. 479–509.
[61] H. Bureau, H. Keppler, N. Metrich, Volcanic degassing of
bromine and iodine: experimental fluid/melt partitioning data and
applications to stratospheric chemistry, Earth Planet. Sci. Lett.
183 (2000) 51–60.
[62] E. Lo Giudice, R. Rasa, Very shallow earthquake and brittle
deformation in active volcanic areas: the Etnean region as an
example, Tectonophysics 202 (1992) 257–268.
[63] C. Klug, K.V. Cashman, Permeability development in vesiculating-
magmas: implications for fragmentation, Bull. Volcanol. 58
(1996) 87–100.
[64] J. Blower, Factors controlling permeability–porosity relationships
in magma, Bull. Volcanol. 63 (2001) 497–504.
[65] M. Burton, H. Mader, M. Polacci, P. Allard, Constraints on the
dynamics of degassing in basaltic systems, Eos, Trans. - AGU 86
(52) (2005) (Fall Meet. Suppl., Abstract V13G-01.
[66] R.S.J. Sparks, The dynamics of bubble formation and growth in
magma: a review and analysis, J. Volcanol. Geotherm. Res. 3
(1978) 1–37.
[67] K. Kazahaya, H. Shinohara, G. Saito, Excessive degassing of
Izu–Oshima volcano: magma convection in a conduit, Bull.
Volcanol. 56 (1994) 207–216.
[68] H.J. Rymer, C.A. Locke, J.B. Murray, Magma movement in Etna
volcano associated with the major 1991–1993 lava eruption:
evidence from gravity and deformation, Bull. Volcanol. 57
(1995) 451–461.
Type
article
File(s)
No Thumbnail Available
Name
1144.pdf
Size
647.58 KB
Format
Adobe PDF
Checksum (MD5)
2a24986174af01fbbba26ee2fb6bdff2