Options
Attenuation and source parameters of shallow microearthquakes at Mt. Etna volcano (Italy)
Author(s)
Language
English
Status
Published
Peer review journal
Yes
Title of the book
Issued date
2006
Keywords
Abstract
We estimated the attenuation laws of high-frequency seismic waves in
the shallow crust (depth 5 km) and earthquake source parameters by using a selected
data set of 320 shallow events (2.6 MD 4.2), recorded at Mt. Etna volcano
during the last two flank eruptions occurring in 2001 and 2002–2003. The quality
factor (Q) was estimated from spectra of P and S waves for 24 stations of the local
permanent network by applying a spectral ratio technique. The results show variations
in both QP and QS as a function of frequency, according to the power law
Q Q0 f n, with n ranging between 0.3 and 1.3 for P waves and between 0.2 and
0.9 for S waves. As typical of volcanic environments, strong azimuthal variations of
QP were also found, suggesting the presence of local strong lateral heterogeneities
and/or of fluid-filled cracked volumes. After correction for attenuation, we estimated
the source parameters (seismic moment, source radius, and stress drop) of a subset
of 66 shallow events, under the assumption of a circular dislocation. The estimated
seismic moments M0 range from 1013 to 1015 N m. The source radii (r) are confined
between 100 and 1000 m and stress drop (Dr) ranges between 0.2 MPa and about
4 MPa. Combining the source parameters obtained in this study with those calculated
by Patane` et al. (1997) for an old data set of smaller microearthquakes (109 M0
1014 N m) recorded in the same area, we re-evaluated the scaling relationship between
seismic moment (M0) and corner frequency ( fc) for the earthquakes with M0 ranging
between 1013 and 1015 N m. We confirm that microearthquakes at Mt. Etna seem not
to obey a M0 fc 3 scaling relationship, as generally observed for moderate to
large earthquakes, as the slope of the scale dependence about 4.3 or higher. Assuming
that this dependence is real, within the uncertainty in the results, a departure from the
self-similarity exists for the volcanotectonic earthquakes at Mt. Etna.
the shallow crust (depth 5 km) and earthquake source parameters by using a selected
data set of 320 shallow events (2.6 MD 4.2), recorded at Mt. Etna volcano
during the last two flank eruptions occurring in 2001 and 2002–2003. The quality
factor (Q) was estimated from spectra of P and S waves for 24 stations of the local
permanent network by applying a spectral ratio technique. The results show variations
in both QP and QS as a function of frequency, according to the power law
Q Q0 f n, with n ranging between 0.3 and 1.3 for P waves and between 0.2 and
0.9 for S waves. As typical of volcanic environments, strong azimuthal variations of
QP were also found, suggesting the presence of local strong lateral heterogeneities
and/or of fluid-filled cracked volumes. After correction for attenuation, we estimated
the source parameters (seismic moment, source radius, and stress drop) of a subset
of 66 shallow events, under the assumption of a circular dislocation. The estimated
seismic moments M0 range from 1013 to 1015 N m. The source radii (r) are confined
between 100 and 1000 m and stress drop (Dr) ranges between 0.2 MPa and about
4 MPa. Combining the source parameters obtained in this study with those calculated
by Patane` et al. (1997) for an old data set of smaller microearthquakes (109 M0
1014 N m) recorded in the same area, we re-evaluated the scaling relationship between
seismic moment (M0) and corner frequency ( fc) for the earthquakes with M0 ranging
between 1013 and 1015 N m. We confirm that microearthquakes at Mt. Etna seem not
to obey a M0 fc 3 scaling relationship, as generally observed for moderate to
large earthquakes, as the slope of the scale dependence about 4.3 or higher. Assuming
that this dependence is real, within the uncertainty in the results, a departure from the
self-similarity exists for the volcanotectonic earthquakes at Mt. Etna.
References
Abercrombie, R. E. (1995). Earthquake source scaling relationships from
1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys.
Res. 100, 24,015–24,036.
Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72,
1217–1231.
Aki, K. (1980). Attenuation of shear waves in the lithosphere for frequencies
from 0.05 to 25 Hz, Phys. Earth Planet. Interiors 21, 50–60.
Aki, K., and G. Richards (1980). Quantitative Seismology, W. H. Freeman,
New York.
Anderson, J. G. (1986). Implication of attenuation for studies of the earthquake
source, in Earthquake Source Mechanics, S. Das, J. Boatwright,
and C. Scholz (Editors), American Geophysical Monograph
37, 311–318.
Anderson, J. G., and S. E. Hough (1984). A model for the shape of the
Fourier amplitude spectrum of acceleration at high frequencies, Bull.
Seism. Soc. Am. 74, 1969–1993.
Archuleta, R. J. (1986). Downhole recordings of seismic radiation, in
Earthquake Source Mechanics, S. Das, J. Boatwright, and C. Scholz
(Editors), American Geophysical Monograph 37, 319–329.
Archuleta, R. J., E. C. Cranswick, C. Mueller, and P. Spudich (1982).
Source parameters of the 1980 Mammoth Lakes, California, earthquake
sequence, J. Geophys. Res. 87, 4595–4607.
Bianco, F., M. Castellano, E. Del Pezzo, and M. J. Ibanez (1999). Attenuation
of short period seismic waves at Mt. Vesuvius, Italy, Geophys.
J. Int. 138, 67–76.
Bindi, D., D. Spallarossa, P. Augliera, and M. Cattaneo (2001). Source
parameters estimated from the aftershocks of the 1997 Umbria-
Marche (Italy) seismic sequence, Bull. Seism. Soc. Am. 91, 448–455.
Boatwright, J. (1978). Detailed analysis of two small New York State earthquake
sequence, Bull. Seism. Soc. Am. 68, 1117–1131.
Boatwright, J. (1980). A spectral theory for circular seismic sources: simple
estimates of source dimension, dynamic stress drop and radiated energy,
Bull. Seism. Soc. Am. 70, 1–27.
Bourbie`, T., O. Coussy, and B. Zinszner (1987). Acoustics of Porous Media,
Gulf Publishing Co.
Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves
from earthquakes, J. Geophys. Res. 75, 4997–5009.
Centamore, C., A. Montalto, and G. Patane` (1997). Self-similarity and scaling
relations for microearthquakes at Mt. Etna volcano (Italy), Phys.
Earth Planet. Interiors 103, 165–177.
Dainty, A. M. (1981). A scattering model to explain seismic Q observations
in the lithosphere between 1 and 30 Hz, J. Geophys. Res. 8, 1126–
1128.
D’Amico, S., and V. Maiolino (2005). Local magnitude estimate at Mt.
Etna, Ann. Geophys. 48, 215–229.
De Gori, P., C. Chiarabba, and D. Patane` (2005). QP structure of Mount
Etna: constraints for the physics of the plumbing system, J. Geophys.
Res. 110, B05303, doi 10.1029/2003JB002875.
de Lorenzo, S., G. Di Grazia, E. Giampiccolo, S. Gresta, H. Langer, G.
Tusa, and A. Ursino (2004). Source and Qp parameters from pulse
width inversion of microearthquake data in southeastern Sicily, Italy,
J. Geophys. Res. 109, B07308, doi 10.1029/2003JB002577.
de Lorenzo, S., A. Zollo, and F. Mongelli (2001). Source parameters and
three-dimensional attenuation structure from the inversion of microearthquake
pulse width data: QP imaging and inferences on the
thermal state of the Campi Flegrei caldera (southern Italy), J. Geophys.
Res. 106, 16,265–16,286.
Del Pezzo, E., and D. Patane` (1992). Coda Q dependence on time, frequency
and coda duration interval at Mt. Etna, Sicily, in Volcanic
Seismology, I.A.V.C.E.I. Proceedings in Volcanology, Vol. 3, P. Gasparini,
et al. (Editors), Springer-Verlag, New York.
Del Pezzo, E., F. Ferulano, A. Giarrusso, and M. Martini (1983). Seismic
coda Q and scaling law of the source spectra at the Aeolian Islands,
southern Italy, Bull. Seism. Soc. Am. 73, 97–108.
Del Pezzo, E., S. Gresta, D. Patane`, G. Patane`, and G. Scarcella (1987).
Attenuation of short period seismic waves at Etna as compared to
other volcanic areas, Pure Appl. Geophys. 125, 1039–1050.
Eberhart-Phillips, D., and M. Chadwick (2002). Three-dimensional attenuation
model of the shallow Hikurangi subduction zone in the Raukumara
Peninsula, New Zealand, J. Geophys. Res. 107, 2033, doi
10.1029/2000JB000046.
Frankel, A. (1982). The effects of attenuation and site response on the
spectra of microearthquakes in the Northeastern Caribbean, Bull.
Seism. Soc. Am. 72, 1379–1402.
Frankel, A., and L. Wennerberg (1989). Microearthquake spectra from the
Anza, California, seismic network: site response and source scaling,
Bull. Seism. Soc. Am. 79, 581–609.
Garcı`a-Garcı`a, J. M., M. D. Romacho, and A. Jime´nez (2004). Determination
of near-surface attenuation, with j parameter, to obtain the
seismic moment, stress drop, source dimension and seismic energy
for microearthquakes in the Granada Basin (Southern Spain), Phys.
Earth Planet. Interiors 141, 9–26.
Giampiccolo, E., S. Gresta, and G. Ganci (2003). Attenuation of body
waves in southeastern Sicily (Italy), Phys. Earth Planet. Interiors 135,
267–279.
Giampiccolo, E., T. Tuve`, S. Gresta, and D. Patane` (2006). S-waves attenuation
and separation of scattering and intrinsic absorption of seismic
energy in southeastern Sicily (Italy), Geophys. J. Int. 165, 211–222.
Guo, H. A., A. Lerner-Lam, and S. E. Hough (1992). Empirical Green’s
function study of Loma Prieta aftershocks: Evidence of fault zone
complexity (abstract), Seism. Res. Lett. 63, 76.
Haberland, Ch., and A. Rietbrock (2001). Attenuation tomography in the
Central Andes: a detailed insight into the structure of a magmatic arc,
J. Geophys. Res. 106, 11,151–11,167.
Hanks, T. C. (1982). fmax, Bull. Seism. Soc. Am. 72, 1867–1879.
Hanks, T. C., and H. Kanamori (1979). A moment magnitude scale, J.
Geophys. Res. 84, 2348–2350.
Hiramatsu, Y., H. Yamanaka, K. Tadokoro, K. Nishigami, and S. Ohmi
(2002). Scaling law between corner frequency and seismic moment
of microearthquakes: is the breakdown of the cube law a nature
of earthquakes?, Geophys. Res. Lett. 29, 1211, doi 10.1029/2001
GL013894.
Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991).
Seismic heterogeneity of Mt. Etna: structure and activity, Geophys.
J. Int. 105, 139–153.
Hough, S. E. (1997). Empirical Green’s function analysis: taking the next
step, J. Geophys. Res. 102, 5369–5384.
Hough, S. E., and H. Kanamori (2002). Source properties of earthquakes
near the Salton Sea triggered by the 16 October 1999 M7.1 Hector
Mine, California, earthquake, Bull. Seism. Soc. Am. 92, 1281–1289.
Hough, S. E., J. Lees, and F. Monastero (1999). Attenuation and source
properties at the Coso geothermal region, California, Bull. Seism. Soc.
Am. 89, 1606–1619.
Iban˜ez, J. M., E. Del Pezzo, M. Martini, D. Patane`, F. De Miguel, F. Vidal,
and J. Morales (1993). Estimates of coda-Q using a non-linear regression,
J. Phys. Earth 41, 203–219.
Ide, S., and G. C. Beroza (2001). Does apparent stress vary with earthquake
size? Geophys. Res. Lett. 28, 3349–3352.
Iio, Y. (1986). Scaling relation between earthquake size and duration of
faulting for shallow earthquakes in seismic moment between 1010 and
1025 dyne cm, J. Phys. Earth 34, 127–169.
Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys.
Res. 82, 2981–2987.
Kanamori, H. (2002). Are large and small earthquakes dynamically different?
(abstract), Eos Trans. AGU 83, no. 47 (Fall Meeting Suppl.),
S07E-02.
Keilis Borok, V. I. (1959). On estimation of the displacement in an earthquake
source dimension, Ann. Geofis. 12, 205–214.
Lahr, J. C. (1989). HYPOELLIPSE/VERSION 2.0: a computer program
for determining local earthquake hypocentral parameters, magnitude
and first motion pattern, U.S. Geol. Surv. Open-File Rept. 89/116,
81 pp.
Lees, J. M., and G. T. Lindley (1994). Three-dimensional attenuation tomography
at Loma-Prieta: inversion of t* for Q, J. Geophys. Res. 99,
6843–6863.
Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull. Seism.
Soc. Am. 66, 639–666.
Malin, P. E., and J. A. Waller (1985). Preliminary results from vertical
seismic profiling of Oroville microearthquake S-waves, Geophys. Res.
Lett. 12, 137–140.
Martı`nez-Arevalo, C., D. Patane`, A. Rietbrock, and J. M. Ibanez (2005).
The intrusive process leading to the Mt. Etna 2001 flank eruption:
Constraints from 3-D attenuation tomography, Geophys. Res. Lett. 32,
L21309, doi 101029/2005GL023736.
Menke, W., D. Witte, and R. Chen (1985). Laboratory test of apparent
attenuation formula, Bull. Seism. Soc. Am. 75, 1383–1393.
Patane`, D., and E. Giampiccolo (2003). Faulting processes and earthquake
source parameters at Mt. Etna: state of the art and perspectives, in
Mt. Etna: Volcano Laboratory, S. Calvari, et al. (Editors), American
Geophysical Monograph 143, 167–189.
Patane`, D., F. Ferrucci, and S. Gresta (1993). Leggi di scala e parametri di
sorgente per terremoti all’Etna, in 12th Annual Conf. GNGTS, 925–
928 (in Italian).
Patane`, D., G. Coco, M. Corrao, S. Imposa, and A. Montalto (1995). Source
parameters of seismic events at Mount Etna volcano, Italy, during the
outburst of the 1991-1993 eruption, Phys. Earth Planet. Interiors 89,
149–162.
Patane`, D., F. Ferrucci, E. Giampiccolo, and L. Scaramuzzino (1997).
Source scaling of microearthquakes at Mt. Etna volcano and in the
Calabrian Arc (southern Italy), Geophys. Res. Lett. 24, 1879–1882.
Patane`, D., F. Ferrucci, and S. Gresta (1994). Spectral features of microearthquakes
in volcanic areas: attenuation in the crust and amplitude
response of the site at Mt. Etna, Italy, Bull. Seism. Soc. Am. 84,
1842–1860.
Prejean, S. G., and W. Ellsworth (2001). Observations of earthquakes
source parameters at 2 km depth in the Long Valley Caldera, eastern
California, Bull. Seism. Soc. Am. 91, no. 2, 165–177.
Rietbrock, A. (2001). P wave attenuation structure in the fault area of the
1995 Kobe earthquake, J. Geophys. Res. 106, 4141–4154.
Sato, H., I. S. Sacks, T. Murase, G. Muncill, and H. Fukuyama (1989).
QP-melting temperature relation in peridotite at high pressure and
temperature: attenuation mechanism and implications for mechanical
properties of the upper mantle, J. Geophys. Res. 94, 10,647–10,661.
Scherbaum, F. (1990). Combined inversion for the three-dimensional Q
structure and source parameters using microearthquake spectra, J.
Geophys. Res. 95, 12,423–12,438.
Spencer, J. W. (1981). Stress relaxation at low frequencies in fluid-saturated
rocks: attenuation and modulus dispersion, J. Geophys. Res. 86,
1803–1812.
Tselentis, G. A. (1998). Intrinsic and scattering seismic attenuation in W.
Greece, Pure Appl. Geophys. 153, 703–712.
Tsujura, M. (1966). Frequency analysis of seismic waves: 1, Bull. Earthquake
Res. Inst., Tokyo Univ. 44, 873–891.
Tusa, G., A. Brancato, and S. Gresta (2006a). Source parameters of microearthquakes
in southeastern Sicily (Italy), Bull. Seism. Soc. Am.
96, no. 3, doi 10.1785/0120050071.
Tusa, G., A. Brancato, S. Gresta, and S. D. Malone (2006b). Source parameters
of microearthquakes at Mount St. Helens (USA). Geophys. J.
Int. (in press).
Tusa, G., S. D. Malone, E. Giampiccolo, S. Gresta, and C. Musumeci
(2004). Attenuation of short-period P waves at Mount St. Helens, Bull.
Seism. Soc. Am. 94, 1441–1455.
Walter, W. R., K. Mayeda, and S. Ruppert (2002). Earthquake apparent
stress scaling (abstract), EOS Trans. AGU 83, no. 47 (Fall Meeting
Suppl.), S07E-01.
Winkler, K. W., and A. Nur (1982). Seismic attenuation: effects of pore
fluids and frictional sliding, Geophysics 47, 1–15.
Zucca, J. J., L. J. Hutchings, and P. W. Kasameyer (1994). Seismic velocity
and attenuation structure of the Geysers geothermal field, California,
Geothermics 23, 111–126.
1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys.
Res. 100, 24,015–24,036.
Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72,
1217–1231.
Aki, K. (1980). Attenuation of shear waves in the lithosphere for frequencies
from 0.05 to 25 Hz, Phys. Earth Planet. Interiors 21, 50–60.
Aki, K., and G. Richards (1980). Quantitative Seismology, W. H. Freeman,
New York.
Anderson, J. G. (1986). Implication of attenuation for studies of the earthquake
source, in Earthquake Source Mechanics, S. Das, J. Boatwright,
and C. Scholz (Editors), American Geophysical Monograph
37, 311–318.
Anderson, J. G., and S. E. Hough (1984). A model for the shape of the
Fourier amplitude spectrum of acceleration at high frequencies, Bull.
Seism. Soc. Am. 74, 1969–1993.
Archuleta, R. J. (1986). Downhole recordings of seismic radiation, in
Earthquake Source Mechanics, S. Das, J. Boatwright, and C. Scholz
(Editors), American Geophysical Monograph 37, 319–329.
Archuleta, R. J., E. C. Cranswick, C. Mueller, and P. Spudich (1982).
Source parameters of the 1980 Mammoth Lakes, California, earthquake
sequence, J. Geophys. Res. 87, 4595–4607.
Bianco, F., M. Castellano, E. Del Pezzo, and M. J. Ibanez (1999). Attenuation
of short period seismic waves at Mt. Vesuvius, Italy, Geophys.
J. Int. 138, 67–76.
Bindi, D., D. Spallarossa, P. Augliera, and M. Cattaneo (2001). Source
parameters estimated from the aftershocks of the 1997 Umbria-
Marche (Italy) seismic sequence, Bull. Seism. Soc. Am. 91, 448–455.
Boatwright, J. (1978). Detailed analysis of two small New York State earthquake
sequence, Bull. Seism. Soc. Am. 68, 1117–1131.
Boatwright, J. (1980). A spectral theory for circular seismic sources: simple
estimates of source dimension, dynamic stress drop and radiated energy,
Bull. Seism. Soc. Am. 70, 1–27.
Bourbie`, T., O. Coussy, and B. Zinszner (1987). Acoustics of Porous Media,
Gulf Publishing Co.
Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves
from earthquakes, J. Geophys. Res. 75, 4997–5009.
Centamore, C., A. Montalto, and G. Patane` (1997). Self-similarity and scaling
relations for microearthquakes at Mt. Etna volcano (Italy), Phys.
Earth Planet. Interiors 103, 165–177.
Dainty, A. M. (1981). A scattering model to explain seismic Q observations
in the lithosphere between 1 and 30 Hz, J. Geophys. Res. 8, 1126–
1128.
D’Amico, S., and V. Maiolino (2005). Local magnitude estimate at Mt.
Etna, Ann. Geophys. 48, 215–229.
De Gori, P., C. Chiarabba, and D. Patane` (2005). QP structure of Mount
Etna: constraints for the physics of the plumbing system, J. Geophys.
Res. 110, B05303, doi 10.1029/2003JB002875.
de Lorenzo, S., G. Di Grazia, E. Giampiccolo, S. Gresta, H. Langer, G.
Tusa, and A. Ursino (2004). Source and Qp parameters from pulse
width inversion of microearthquake data in southeastern Sicily, Italy,
J. Geophys. Res. 109, B07308, doi 10.1029/2003JB002577.
de Lorenzo, S., A. Zollo, and F. Mongelli (2001). Source parameters and
three-dimensional attenuation structure from the inversion of microearthquake
pulse width data: QP imaging and inferences on the
thermal state of the Campi Flegrei caldera (southern Italy), J. Geophys.
Res. 106, 16,265–16,286.
Del Pezzo, E., and D. Patane` (1992). Coda Q dependence on time, frequency
and coda duration interval at Mt. Etna, Sicily, in Volcanic
Seismology, I.A.V.C.E.I. Proceedings in Volcanology, Vol. 3, P. Gasparini,
et al. (Editors), Springer-Verlag, New York.
Del Pezzo, E., F. Ferulano, A. Giarrusso, and M. Martini (1983). Seismic
coda Q and scaling law of the source spectra at the Aeolian Islands,
southern Italy, Bull. Seism. Soc. Am. 73, 97–108.
Del Pezzo, E., S. Gresta, D. Patane`, G. Patane`, and G. Scarcella (1987).
Attenuation of short period seismic waves at Etna as compared to
other volcanic areas, Pure Appl. Geophys. 125, 1039–1050.
Eberhart-Phillips, D., and M. Chadwick (2002). Three-dimensional attenuation
model of the shallow Hikurangi subduction zone in the Raukumara
Peninsula, New Zealand, J. Geophys. Res. 107, 2033, doi
10.1029/2000JB000046.
Frankel, A. (1982). The effects of attenuation and site response on the
spectra of microearthquakes in the Northeastern Caribbean, Bull.
Seism. Soc. Am. 72, 1379–1402.
Frankel, A., and L. Wennerberg (1989). Microearthquake spectra from the
Anza, California, seismic network: site response and source scaling,
Bull. Seism. Soc. Am. 79, 581–609.
Garcı`a-Garcı`a, J. M., M. D. Romacho, and A. Jime´nez (2004). Determination
of near-surface attenuation, with j parameter, to obtain the
seismic moment, stress drop, source dimension and seismic energy
for microearthquakes in the Granada Basin (Southern Spain), Phys.
Earth Planet. Interiors 141, 9–26.
Giampiccolo, E., S. Gresta, and G. Ganci (2003). Attenuation of body
waves in southeastern Sicily (Italy), Phys. Earth Planet. Interiors 135,
267–279.
Giampiccolo, E., T. Tuve`, S. Gresta, and D. Patane` (2006). S-waves attenuation
and separation of scattering and intrinsic absorption of seismic
energy in southeastern Sicily (Italy), Geophys. J. Int. 165, 211–222.
Guo, H. A., A. Lerner-Lam, and S. E. Hough (1992). Empirical Green’s
function study of Loma Prieta aftershocks: Evidence of fault zone
complexity (abstract), Seism. Res. Lett. 63, 76.
Haberland, Ch., and A. Rietbrock (2001). Attenuation tomography in the
Central Andes: a detailed insight into the structure of a magmatic arc,
J. Geophys. Res. 106, 11,151–11,167.
Hanks, T. C. (1982). fmax, Bull. Seism. Soc. Am. 72, 1867–1879.
Hanks, T. C., and H. Kanamori (1979). A moment magnitude scale, J.
Geophys. Res. 84, 2348–2350.
Hiramatsu, Y., H. Yamanaka, K. Tadokoro, K. Nishigami, and S. Ohmi
(2002). Scaling law between corner frequency and seismic moment
of microearthquakes: is the breakdown of the cube law a nature
of earthquakes?, Geophys. Res. Lett. 29, 1211, doi 10.1029/2001
GL013894.
Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991).
Seismic heterogeneity of Mt. Etna: structure and activity, Geophys.
J. Int. 105, 139–153.
Hough, S. E. (1997). Empirical Green’s function analysis: taking the next
step, J. Geophys. Res. 102, 5369–5384.
Hough, S. E., and H. Kanamori (2002). Source properties of earthquakes
near the Salton Sea triggered by the 16 October 1999 M7.1 Hector
Mine, California, earthquake, Bull. Seism. Soc. Am. 92, 1281–1289.
Hough, S. E., J. Lees, and F. Monastero (1999). Attenuation and source
properties at the Coso geothermal region, California, Bull. Seism. Soc.
Am. 89, 1606–1619.
Iban˜ez, J. M., E. Del Pezzo, M. Martini, D. Patane`, F. De Miguel, F. Vidal,
and J. Morales (1993). Estimates of coda-Q using a non-linear regression,
J. Phys. Earth 41, 203–219.
Ide, S., and G. C. Beroza (2001). Does apparent stress vary with earthquake
size? Geophys. Res. Lett. 28, 3349–3352.
Iio, Y. (1986). Scaling relation between earthquake size and duration of
faulting for shallow earthquakes in seismic moment between 1010 and
1025 dyne cm, J. Phys. Earth 34, 127–169.
Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys.
Res. 82, 2981–2987.
Kanamori, H. (2002). Are large and small earthquakes dynamically different?
(abstract), Eos Trans. AGU 83, no. 47 (Fall Meeting Suppl.),
S07E-02.
Keilis Borok, V. I. (1959). On estimation of the displacement in an earthquake
source dimension, Ann. Geofis. 12, 205–214.
Lahr, J. C. (1989). HYPOELLIPSE/VERSION 2.0: a computer program
for determining local earthquake hypocentral parameters, magnitude
and first motion pattern, U.S. Geol. Surv. Open-File Rept. 89/116,
81 pp.
Lees, J. M., and G. T. Lindley (1994). Three-dimensional attenuation tomography
at Loma-Prieta: inversion of t* for Q, J. Geophys. Res. 99,
6843–6863.
Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull. Seism.
Soc. Am. 66, 639–666.
Malin, P. E., and J. A. Waller (1985). Preliminary results from vertical
seismic profiling of Oroville microearthquake S-waves, Geophys. Res.
Lett. 12, 137–140.
Martı`nez-Arevalo, C., D. Patane`, A. Rietbrock, and J. M. Ibanez (2005).
The intrusive process leading to the Mt. Etna 2001 flank eruption:
Constraints from 3-D attenuation tomography, Geophys. Res. Lett. 32,
L21309, doi 101029/2005GL023736.
Menke, W., D. Witte, and R. Chen (1985). Laboratory test of apparent
attenuation formula, Bull. Seism. Soc. Am. 75, 1383–1393.
Patane`, D., and E. Giampiccolo (2003). Faulting processes and earthquake
source parameters at Mt. Etna: state of the art and perspectives, in
Mt. Etna: Volcano Laboratory, S. Calvari, et al. (Editors), American
Geophysical Monograph 143, 167–189.
Patane`, D., F. Ferrucci, and S. Gresta (1993). Leggi di scala e parametri di
sorgente per terremoti all’Etna, in 12th Annual Conf. GNGTS, 925–
928 (in Italian).
Patane`, D., G. Coco, M. Corrao, S. Imposa, and A. Montalto (1995). Source
parameters of seismic events at Mount Etna volcano, Italy, during the
outburst of the 1991-1993 eruption, Phys. Earth Planet. Interiors 89,
149–162.
Patane`, D., F. Ferrucci, E. Giampiccolo, and L. Scaramuzzino (1997).
Source scaling of microearthquakes at Mt. Etna volcano and in the
Calabrian Arc (southern Italy), Geophys. Res. Lett. 24, 1879–1882.
Patane`, D., F. Ferrucci, and S. Gresta (1994). Spectral features of microearthquakes
in volcanic areas: attenuation in the crust and amplitude
response of the site at Mt. Etna, Italy, Bull. Seism. Soc. Am. 84,
1842–1860.
Prejean, S. G., and W. Ellsworth (2001). Observations of earthquakes
source parameters at 2 km depth in the Long Valley Caldera, eastern
California, Bull. Seism. Soc. Am. 91, no. 2, 165–177.
Rietbrock, A. (2001). P wave attenuation structure in the fault area of the
1995 Kobe earthquake, J. Geophys. Res. 106, 4141–4154.
Sato, H., I. S. Sacks, T. Murase, G. Muncill, and H. Fukuyama (1989).
QP-melting temperature relation in peridotite at high pressure and
temperature: attenuation mechanism and implications for mechanical
properties of the upper mantle, J. Geophys. Res. 94, 10,647–10,661.
Scherbaum, F. (1990). Combined inversion for the three-dimensional Q
structure and source parameters using microearthquake spectra, J.
Geophys. Res. 95, 12,423–12,438.
Spencer, J. W. (1981). Stress relaxation at low frequencies in fluid-saturated
rocks: attenuation and modulus dispersion, J. Geophys. Res. 86,
1803–1812.
Tselentis, G. A. (1998). Intrinsic and scattering seismic attenuation in W.
Greece, Pure Appl. Geophys. 153, 703–712.
Tsujura, M. (1966). Frequency analysis of seismic waves: 1, Bull. Earthquake
Res. Inst., Tokyo Univ. 44, 873–891.
Tusa, G., A. Brancato, and S. Gresta (2006a). Source parameters of microearthquakes
in southeastern Sicily (Italy), Bull. Seism. Soc. Am.
96, no. 3, doi 10.1785/0120050071.
Tusa, G., A. Brancato, S. Gresta, and S. D. Malone (2006b). Source parameters
of microearthquakes at Mount St. Helens (USA). Geophys. J.
Int. (in press).
Tusa, G., S. D. Malone, E. Giampiccolo, S. Gresta, and C. Musumeci
(2004). Attenuation of short-period P waves at Mount St. Helens, Bull.
Seism. Soc. Am. 94, 1441–1455.
Walter, W. R., K. Mayeda, and S. Ruppert (2002). Earthquake apparent
stress scaling (abstract), EOS Trans. AGU 83, no. 47 (Fall Meeting
Suppl.), S07E-01.
Winkler, K. W., and A. Nur (1982). Seismic attenuation: effects of pore
fluids and frictional sliding, Geophysics 47, 1–15.
Zucca, J. J., L. J. Hutchings, and P. W. Kasameyer (1994). Seismic velocity
and attenuation structure of the Geysers geothermal field, California,
Geothermics 23, 111–126.
Type
article
File(s)
No Thumbnail Available
Name
1114.pdf
Size
631.81 KB
Format
Adobe PDF
Checksum (MD5)
77a9426ed18a26f0644e38f73f7e0d61