Options
Pyroclastic flow dynamics and hazard in a caldera setting: application to Phlegrean Fields (Italy)
Author(s)
Language
English
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
11 / 7 (2006)
Publisher
Agu
Pages (printed)
Q11003
Issued date
2006
Abstract
Numerical simulation of pyroclastic density currents has developed significantly in recent years and is
increasingly applied to volcanological research. Results from physical modeling are commonly taken into
account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work,
we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along
the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera.
The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were
based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for
each scenario. Simulations were performed along different topographic profiles to evaluate the effects of
topographic barriers on flow propagation. Simulations highlighted interesting features associated with the
presence of obstacles such as the development of backflows. Complex interaction between outward
moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even
interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of
large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic
pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of
temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case
of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable
protection to the region beyond.
increasingly applied to volcanological research. Results from physical modeling are commonly taken into
account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work,
we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along
the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera.
The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were
based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for
each scenario. Simulations were performed along different topographic profiles to evaluate the effects of
topographic barriers on flow propagation. Simulations highlighted interesting features associated with the
presence of obstacles such as the development of backflows. Complex interaction between outward
moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even
interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of
large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic
pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of
temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case
of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable
protection to the region beyond.
References
Alberico, I., L. Lirer, P. Petrosino, and R. Scandone (2002), A
methodology for the evaluation of long-term volcanic risk
from pyroclastic flows in Campi Flegrei (Italy), J. Volcanol.
Geotherm. Res., 116, 63–78.
Barberi, F., G. Corrado, F. Innocenti, and G. Luongo (1984a),
Phlegrean Fields 1982–1984: Brief chronicle of a volcano
emergency in a densely populated area, Bull. Volcanol., 41,
1–22.
Barberi, F., F. Innocenti, G. Luongo, M. Rosi, R. Santacroce,
and R. Scandone (1984b), Il rischio vulcanico nei Campi
Flegrei, CNR-GNV report, Gruppo Naz. per la Vulcanol.,
Cons. Naz. delle Ric., Rome.
Baxter, P. J. (1990), Medical effects of volcanic eruptions: I,
Main causes of death and injury, Bull. Volcanol., 52, 532–
544.
Baxter, P. J., A. Neri, and M. Todesco (1998), Physical modeling
and human survival in pyroclastic flows, Nat. Hazards,
17, 163–176.
Baxter, P. J., R. Boyle, P. Cole, A. Neri, R. Spence, and
G. Zuccaro (2005), The impact of pyroclastic surges on
buildings at the eruption of the Soufrie`re Hills volcano,
Montserrat, Bull. Volcanol., 67, 292–313.
Cavazzoni, C., T. Esposti Ongaro, G. Erbacci, A. Neri, and
G. Macedonio (2005), High performance computing simulations
of pyroclastic flows, Comput. Phys. Comm., 169, 454–
456.
Clarke, A., B. Voight, A. Neri, and G. Macedonio (2002),
Transient dynamics of vulcanian explosions and column collapse,
Nature, 415, 897–901.
Cook, N. J. (1985), The Designer’s Guide to Wind Loading of
Building Structures, Butterworths, London.
Co´rdoba, G. (2005), A numerical model for the dynamics of
pyroclastic flows at Galeras Volcano, Colombia, J. Volcanol.
Geotherm. Res., 139, 59–71.
Dartevelle, S. (2004), Numerical modeling of geophysical
granular flows: 1. A comprehensive approach to granular
rheologies and geophysical multiphase flows, Geochem.
Geophys. Geosyst., 5, Q08003, doi:10.1029/2003GC000636.
Dartevelle, S., W. I. Rose, J. Stix, K. Kelfoun, and J. W.
Vallance (2004), Numerical modeling of geophysical granular
flows: 2. Computer simulations of plinian clouds and
pyroclastic flows and surges, Geochem. Geophys. Geosyst.,
5, Q08004, doi:10.1029/2003GC000637.
Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2001), Statistical
analysis of textural data from complex pyroclastic sequences:
implications for fragmentation processes of the
Agnano-Monte Spina Tephra (4.1 ka), Phlegrean Fields,
southern Italy, Bull. Volcanol., 63, 433–461.
Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2004a), Interaction
between particles transported by fallout and surge in
the deposits of the Agnano-Monte Spina eruption (Campi
Flegrei, Southern Italy), J. Volcanol. Geotherm. Res., 133,
193–210.
Dellino, P., R. Isaia, and M. Veneruso (2004b), Turbulent
boundary layer shear flows as an approximation of base
surges at Campi Flegrei (Southern Italy), J. Volcanol.
Geotherm. Res., 133, 211–228.
de Vita, S., et al. (1999), The Agnano-Monte Spina eruption
(4.1 ka) in the resurgent, nested Campi Flegrei caldera
(Italy), J. Volcanol. Geotherm. Res., 91, 269–301.
Di Muro, A., A. Neri, and M. Rosi (2004), Contemporaneous
convective and collapsing eruptive dynamics: The transitional
regime of explosive eruptions, Geophys. Res. Lett.,
31, L10607, doi:10.1029/2004GL019709.
Di Vito, M. A., L. Lirer, G. Mastrolorenzo, and G. Rolandi
(1987), The Monte Nuovo eruption (Campi Flegrei, Italy),
Bull. Volcanol., 49, 608–615.
Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita,
M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic
and deformational history of the Campi Flegrei caldera in
the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246.
Dobran, F., A. Neri, and G. Macedonio (1993), Numerical
simulations of collapsing volcanic columns, J. Geophys.
Res., 98, 4231–4259.
Dobran, F., A. Neri, and M. Todesco (1994), Assessing pyroclastic
flow hazard at Vesuvius, Nature, 367, 551–554.
D’Oriano, C., E. Poggianti, A. Bertagnini, R. Cioni, P. Landi,
M. Polacci, and M. Rosi (2005), Changes in eruptive style
during the A. D. 1538 Monte Nuovo eruption (Phlegrean
Fields, Italy): The role of syn-eruptive crystallization, Bull.
Volcanol., 67, 601–621.
Esposti Ongaro, T., A. Neri, M. Todesco, and G. Macedonio
(2002), Pyroclastic flow hazard at Vesuvius from numerical
modelling. II. Analysis of local flow variables, Bull. Volcanol.,
64, 178–191.
Esposti Ongaro, T., A. Neri, C. Cavazzoni, G. Erbacci,
A. Clarke, and B. Voight (2006), A new high-performance
3D multiphase flow code for the simulation of collapsing
columns and volcanic blasts, paper presented at Cities on
Volcanoes 4, IAVCEI, Quito, Ecuador, 23–27 Jan.
Fisher, R. V. (1990), Transport and deposition of pyroclastic
surge across an area of high relief: The May 1980 eruption of
Mount St Helens, Washington, Geol. Soc. Am. Bull., 102,
1038–1054.
Herzog, M., H. F. Graf, C. Textor, and J. M. Oberhuber (1998),
The effects of phase change of water on the development of
volcanic plumes, J. Volcanol. Geotherm. Res., 87, 55–74.
Isaia, R., M. D’Antonio, F. Dell’Erba, M. Di Vito, and G. Orsi
(2004), The Astroni volcano: The only example of closely
spaced eruptions in the same vent area during the recent
history of the Campi Flegrei caldera (Italy), J. Volcanol.
Geotherm. Res., 133, 171–192.
Ishimine, Y. (2005), Numerical study of pyroclastic surges,
J. Volcanol. Geotherm. Res., 139, 33–57.
Kunii, D., and O. Levenspiel (1995), Fluidization Engineering,
Elsevier, New York.
Lirer, L., P. Petrosino, and I. Alberico (2001), Hazard assessment
at volcanic fields: The Campi Flegrei case history,
J. Volcanol. Geotherm. Res., 112, 53–74.
Mason, P. J. (1994), Large-eddy simulation: a critical review of
the technique, Q. J. R. Meteorol. Soc., 120, 1–26.
Neri, A., and F. Dobran (1994), Influence of eruption parameters
on the thermofluid dynamics of collapsing volcanic
columns, J. Geophys. Res., 99, 11,833–11,857.
Neri, A., and D. Gidaspow (2000), Riser hydrodynamics: Simulation
using kinetic theory, AIChE J., 46, 52–67.
Neri, A., and G. Macedonio (1996), Numerical simulation of
collapsing volcanic columns with particles of two sizes,
J. Geophys. Res., 101, 8153–8174.
Neri, A., P. Papale, and G. Macedonio (1998), The role of
magma composition and water content in explosive eruptions:
II. Pyroclastic dispersion dynamics, J. Volcanol.
Geotherm. Res., 87, 95–115.
Neri, A., P. Papale, D. Del Seppia, and R. Santacroce (2002),
Couplet conduit and atmospheric dispersion dynamics during
the Plinian phase of the AD 79 Vesuvius eruption,
J. Volcanol. Geotherm., Res., 120, 141–160.
Neri, A., T. Esposti Ongaro, G. Macedonio, and D. Gidaspow
(2003), Multiparticle simulation of collapsing volcanic columns
and pyroclastic flow, J. Geophys. Res., 108(B4), 2202,
doi:10.1029/2001JB000508.
Nuovo Colombo (1990), Carichi nelle costruzioni, manuale
dell’ingegnere, Hoepli, Milan, Italy.
Oberhuber, J. M., M. Herzog, H. F. Graf, and K. Schwanke
(1998), Volcanic plume simulation on a large scale, J. Volcanol.
Geotherm. Res., 87, 29–53.
Orsi, G., S. de Vita, and M. Di Vito (1996), The restless,
resurgent Campi Flegrei nested caldera (Italy): Constraints
on its evolution and configuration, J. Volcanol. Geotherm.
Res., 74, 179–214.
Orsi, G., M. Di Vito, and R. Isaia (2004), Volcanic hazard
assessment at the restless Campi Flegrei caldera, Bull. Volcanol.,
66, 514–530.
Ort, M. H., G. Orsi, L. Pappalardo, and R. V. Fisher (2003),
Anisotropy of magnetic susceptibility studies of depositional
processes in the Campanian Ignimbrite, Italy, Bull. Volcanol.,
65, 55–72.
Papale, P. (2001), Dynamics of magma flow in volcanic conduits
with variable fragmentation efficiency and nonequilibrium
pumice degassing, J. Geophys. Res., 106, 11,043–
11,065.
Papale, P. (2004), Simulation of eruptive scenarios at Phlegrean
Fields based on field, laboratory and numerical studies
and implication for volcanic hazard, Final Report of the
INGV 2001–2003 Frame Program, Ist. Naz. di Geofis. e
Vulcanol., Bologna, Italy.
Piochi, M., G. Mastrolorenzo, and L. Pappalardo (2005),
Magma ascent and eruptive processes from textural and
compositional features of Monte Nuovo pyroclastic products,
Campi Flegrei, Italy, Bull. Volcanol., 67, 663–678.
Romano, C., D. Giordano, P. Papale, V. Mincione, D. B.
Dingwell, and M. Rosi (2003), The dry and hydrous viscosities
of silicate melts from Vesuvius and Phlegrean Fields,
Chem. Geol., 202, 23–38.
Rosi, M., and R. Santacroce (1984), Volcanic hazard
assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data, Bull. Volcanol., 47,
359–370.
Rosi, M., and A. Sbrana (Eds.) (1987), The Phlegrean Fields,
‘‘La Ricerca Scientifica,’’ vol. 114, Cons. Naz. delle Ric.,
Rome.
Rosi, M., A. Sbrana, and C. Principe (1983), The Phlegraean
Fields: Structural evolution, volcanic history and
eruptive mechanisms, J. Volcanol. Geotherm. Res., 17,
273–288.
Rossano, S., G. Mastrolorenzo, and G. De Natale (2004),
Numerical simulation of pyroclastic density currents on
Campi Flegrei topography: A tool for statistical hazard estimation,
J. Volcanol. Geotherm. Res., 132, 1–14.
Sheridan, M. F., and M. C. Malin (1983), Application of computer
assisted mapping to volcanic hazard evaluation of
surge eruptions: Vulcano, Lipari and Vesuvius, J. Volcanol.
Geotherm. Res., 17, 187–202.
Suzuki, Y. J., T. Koyaguchi, M. Ogawa, and I. Hachisu (2005),
A numerical study of turbulent mixing in eruption clouds
using a three-dimensional fluid dynamics model, J. Geophys.
Res., 110, B08201, doi:10.1029/2004JB003460.
Todesco, M., A. Neri, T. Esposti Ongaro, P. Papale,
G. Macedonio, R. Santacroce, and A. Longo (2002), Pyroclastic
flow hazard at Vesuvius from numerical modelling.
I. Large scale dynamics, Bull. Volcanol., 64, 155–177.
Valentine, G. A. (1998), Damage to structures by pyroclastic
flows and surges, inferred from nuclear weapons effects,
J. Volcanol. Geotherm. Res., 87, 117–140.
Valentine, G. A., and K. H. Wohletz (1989), Numerical models
of Plinian eruption columns and pyroclastic flows, J. Geophys.
Res., 94, 1867–1887.
Walker, J. P. L. (1981), The Waimihia and Hatepe Plinian
deposits from the rhyolitic Taupo volcanic centre, N. Z. F.,
Geol. Geophys., 24, 305–324.
methodology for the evaluation of long-term volcanic risk
from pyroclastic flows in Campi Flegrei (Italy), J. Volcanol.
Geotherm. Res., 116, 63–78.
Barberi, F., G. Corrado, F. Innocenti, and G. Luongo (1984a),
Phlegrean Fields 1982–1984: Brief chronicle of a volcano
emergency in a densely populated area, Bull. Volcanol., 41,
1–22.
Barberi, F., F. Innocenti, G. Luongo, M. Rosi, R. Santacroce,
and R. Scandone (1984b), Il rischio vulcanico nei Campi
Flegrei, CNR-GNV report, Gruppo Naz. per la Vulcanol.,
Cons. Naz. delle Ric., Rome.
Baxter, P. J. (1990), Medical effects of volcanic eruptions: I,
Main causes of death and injury, Bull. Volcanol., 52, 532–
544.
Baxter, P. J., A. Neri, and M. Todesco (1998), Physical modeling
and human survival in pyroclastic flows, Nat. Hazards,
17, 163–176.
Baxter, P. J., R. Boyle, P. Cole, A. Neri, R. Spence, and
G. Zuccaro (2005), The impact of pyroclastic surges on
buildings at the eruption of the Soufrie`re Hills volcano,
Montserrat, Bull. Volcanol., 67, 292–313.
Cavazzoni, C., T. Esposti Ongaro, G. Erbacci, A. Neri, and
G. Macedonio (2005), High performance computing simulations
of pyroclastic flows, Comput. Phys. Comm., 169, 454–
456.
Clarke, A., B. Voight, A. Neri, and G. Macedonio (2002),
Transient dynamics of vulcanian explosions and column collapse,
Nature, 415, 897–901.
Cook, N. J. (1985), The Designer’s Guide to Wind Loading of
Building Structures, Butterworths, London.
Co´rdoba, G. (2005), A numerical model for the dynamics of
pyroclastic flows at Galeras Volcano, Colombia, J. Volcanol.
Geotherm. Res., 139, 59–71.
Dartevelle, S. (2004), Numerical modeling of geophysical
granular flows: 1. A comprehensive approach to granular
rheologies and geophysical multiphase flows, Geochem.
Geophys. Geosyst., 5, Q08003, doi:10.1029/2003GC000636.
Dartevelle, S., W. I. Rose, J. Stix, K. Kelfoun, and J. W.
Vallance (2004), Numerical modeling of geophysical granular
flows: 2. Computer simulations of plinian clouds and
pyroclastic flows and surges, Geochem. Geophys. Geosyst.,
5, Q08004, doi:10.1029/2003GC000637.
Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2001), Statistical
analysis of textural data from complex pyroclastic sequences:
implications for fragmentation processes of the
Agnano-Monte Spina Tephra (4.1 ka), Phlegrean Fields,
southern Italy, Bull. Volcanol., 63, 433–461.
Dellino, P., R. Isaia, L. La Volpe, and G. Orsi (2004a), Interaction
between particles transported by fallout and surge in
the deposits of the Agnano-Monte Spina eruption (Campi
Flegrei, Southern Italy), J. Volcanol. Geotherm. Res., 133,
193–210.
Dellino, P., R. Isaia, and M. Veneruso (2004b), Turbulent
boundary layer shear flows as an approximation of base
surges at Campi Flegrei (Southern Italy), J. Volcanol.
Geotherm. Res., 133, 211–228.
de Vita, S., et al. (1999), The Agnano-Monte Spina eruption
(4.1 ka) in the resurgent, nested Campi Flegrei caldera
(Italy), J. Volcanol. Geotherm. Res., 91, 269–301.
Di Muro, A., A. Neri, and M. Rosi (2004), Contemporaneous
convective and collapsing eruptive dynamics: The transitional
regime of explosive eruptions, Geophys. Res. Lett.,
31, L10607, doi:10.1029/2004GL019709.
Di Vito, M. A., L. Lirer, G. Mastrolorenzo, and G. Rolandi
(1987), The Monte Nuovo eruption (Campi Flegrei, Italy),
Bull. Volcanol., 49, 608–615.
Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita,
M. D’Antonio, L. Pappalardo, and M. Piochi (1999), Volcanic
and deformational history of the Campi Flegrei caldera in
the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221–246.
Dobran, F., A. Neri, and G. Macedonio (1993), Numerical
simulations of collapsing volcanic columns, J. Geophys.
Res., 98, 4231–4259.
Dobran, F., A. Neri, and M. Todesco (1994), Assessing pyroclastic
flow hazard at Vesuvius, Nature, 367, 551–554.
D’Oriano, C., E. Poggianti, A. Bertagnini, R. Cioni, P. Landi,
M. Polacci, and M. Rosi (2005), Changes in eruptive style
during the A. D. 1538 Monte Nuovo eruption (Phlegrean
Fields, Italy): The role of syn-eruptive crystallization, Bull.
Volcanol., 67, 601–621.
Esposti Ongaro, T., A. Neri, M. Todesco, and G. Macedonio
(2002), Pyroclastic flow hazard at Vesuvius from numerical
modelling. II. Analysis of local flow variables, Bull. Volcanol.,
64, 178–191.
Esposti Ongaro, T., A. Neri, C. Cavazzoni, G. Erbacci,
A. Clarke, and B. Voight (2006), A new high-performance
3D multiphase flow code for the simulation of collapsing
columns and volcanic blasts, paper presented at Cities on
Volcanoes 4, IAVCEI, Quito, Ecuador, 23–27 Jan.
Fisher, R. V. (1990), Transport and deposition of pyroclastic
surge across an area of high relief: The May 1980 eruption of
Mount St Helens, Washington, Geol. Soc. Am. Bull., 102,
1038–1054.
Herzog, M., H. F. Graf, C. Textor, and J. M. Oberhuber (1998),
The effects of phase change of water on the development of
volcanic plumes, J. Volcanol. Geotherm. Res., 87, 55–74.
Isaia, R., M. D’Antonio, F. Dell’Erba, M. Di Vito, and G. Orsi
(2004), The Astroni volcano: The only example of closely
spaced eruptions in the same vent area during the recent
history of the Campi Flegrei caldera (Italy), J. Volcanol.
Geotherm. Res., 133, 171–192.
Ishimine, Y. (2005), Numerical study of pyroclastic surges,
J. Volcanol. Geotherm. Res., 139, 33–57.
Kunii, D., and O. Levenspiel (1995), Fluidization Engineering,
Elsevier, New York.
Lirer, L., P. Petrosino, and I. Alberico (2001), Hazard assessment
at volcanic fields: The Campi Flegrei case history,
J. Volcanol. Geotherm. Res., 112, 53–74.
Mason, P. J. (1994), Large-eddy simulation: a critical review of
the technique, Q. J. R. Meteorol. Soc., 120, 1–26.
Neri, A., and F. Dobran (1994), Influence of eruption parameters
on the thermofluid dynamics of collapsing volcanic
columns, J. Geophys. Res., 99, 11,833–11,857.
Neri, A., and D. Gidaspow (2000), Riser hydrodynamics: Simulation
using kinetic theory, AIChE J., 46, 52–67.
Neri, A., and G. Macedonio (1996), Numerical simulation of
collapsing volcanic columns with particles of two sizes,
J. Geophys. Res., 101, 8153–8174.
Neri, A., P. Papale, and G. Macedonio (1998), The role of
magma composition and water content in explosive eruptions:
II. Pyroclastic dispersion dynamics, J. Volcanol.
Geotherm. Res., 87, 95–115.
Neri, A., P. Papale, D. Del Seppia, and R. Santacroce (2002),
Couplet conduit and atmospheric dispersion dynamics during
the Plinian phase of the AD 79 Vesuvius eruption,
J. Volcanol. Geotherm., Res., 120, 141–160.
Neri, A., T. Esposti Ongaro, G. Macedonio, and D. Gidaspow
(2003), Multiparticle simulation of collapsing volcanic columns
and pyroclastic flow, J. Geophys. Res., 108(B4), 2202,
doi:10.1029/2001JB000508.
Nuovo Colombo (1990), Carichi nelle costruzioni, manuale
dell’ingegnere, Hoepli, Milan, Italy.
Oberhuber, J. M., M. Herzog, H. F. Graf, and K. Schwanke
(1998), Volcanic plume simulation on a large scale, J. Volcanol.
Geotherm. Res., 87, 29–53.
Orsi, G., S. de Vita, and M. Di Vito (1996), The restless,
resurgent Campi Flegrei nested caldera (Italy): Constraints
on its evolution and configuration, J. Volcanol. Geotherm.
Res., 74, 179–214.
Orsi, G., M. Di Vito, and R. Isaia (2004), Volcanic hazard
assessment at the restless Campi Flegrei caldera, Bull. Volcanol.,
66, 514–530.
Ort, M. H., G. Orsi, L. Pappalardo, and R. V. Fisher (2003),
Anisotropy of magnetic susceptibility studies of depositional
processes in the Campanian Ignimbrite, Italy, Bull. Volcanol.,
65, 55–72.
Papale, P. (2001), Dynamics of magma flow in volcanic conduits
with variable fragmentation efficiency and nonequilibrium
pumice degassing, J. Geophys. Res., 106, 11,043–
11,065.
Papale, P. (2004), Simulation of eruptive scenarios at Phlegrean
Fields based on field, laboratory and numerical studies
and implication for volcanic hazard, Final Report of the
INGV 2001–2003 Frame Program, Ist. Naz. di Geofis. e
Vulcanol., Bologna, Italy.
Piochi, M., G. Mastrolorenzo, and L. Pappalardo (2005),
Magma ascent and eruptive processes from textural and
compositional features of Monte Nuovo pyroclastic products,
Campi Flegrei, Italy, Bull. Volcanol., 67, 663–678.
Romano, C., D. Giordano, P. Papale, V. Mincione, D. B.
Dingwell, and M. Rosi (2003), The dry and hydrous viscosities
of silicate melts from Vesuvius and Phlegrean Fields,
Chem. Geol., 202, 23–38.
Rosi, M., and R. Santacroce (1984), Volcanic hazard
assessment in the Phlegraean Fields: A contribution based on stratigraphic and historical data, Bull. Volcanol., 47,
359–370.
Rosi, M., and A. Sbrana (Eds.) (1987), The Phlegrean Fields,
‘‘La Ricerca Scientifica,’’ vol. 114, Cons. Naz. delle Ric.,
Rome.
Rosi, M., A. Sbrana, and C. Principe (1983), The Phlegraean
Fields: Structural evolution, volcanic history and
eruptive mechanisms, J. Volcanol. Geotherm. Res., 17,
273–288.
Rossano, S., G. Mastrolorenzo, and G. De Natale (2004),
Numerical simulation of pyroclastic density currents on
Campi Flegrei topography: A tool for statistical hazard estimation,
J. Volcanol. Geotherm. Res., 132, 1–14.
Sheridan, M. F., and M. C. Malin (1983), Application of computer
assisted mapping to volcanic hazard evaluation of
surge eruptions: Vulcano, Lipari and Vesuvius, J. Volcanol.
Geotherm. Res., 17, 187–202.
Suzuki, Y. J., T. Koyaguchi, M. Ogawa, and I. Hachisu (2005),
A numerical study of turbulent mixing in eruption clouds
using a three-dimensional fluid dynamics model, J. Geophys.
Res., 110, B08201, doi:10.1029/2004JB003460.
Todesco, M., A. Neri, T. Esposti Ongaro, P. Papale,
G. Macedonio, R. Santacroce, and A. Longo (2002), Pyroclastic
flow hazard at Vesuvius from numerical modelling.
I. Large scale dynamics, Bull. Volcanol., 64, 155–177.
Valentine, G. A. (1998), Damage to structures by pyroclastic
flows and surges, inferred from nuclear weapons effects,
J. Volcanol. Geotherm. Res., 87, 117–140.
Valentine, G. A., and K. H. Wohletz (1989), Numerical models
of Plinian eruption columns and pyroclastic flows, J. Geophys.
Res., 94, 1867–1887.
Walker, J. P. L. (1981), The Waimihia and Hatepe Plinian
deposits from the rhyolitic Taupo volcanic centre, N. Z. F.,
Geol. Geophys., 24, 305–324.
Type
article
File(s)
No Thumbnail Available
Name
924.pdf
Size
5.77 MB
Format
Adobe PDF
Checksum (MD5)
5d72bc57a7bd8a39b7ed0a999b4080e8