Options
Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica
Author(s)
ANDRILL-SMS Science Team,
Language
English
Obiettivo Specifico
1.8. Osservazioni di geofisica ambientale
2.2. Laboratorio di paleomagnetismo
3.8. Geofisica per l'ambiente
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
11-12 / 123 (2011)
Publisher
Geological Society of America
Pages (printed)
2352-2365
Issued date
November 2011
Abstract
In 2007, the Antarctic Geological Drilling
Program (ANDRILL) drilled 1138.54 m of
strata ~10 km off the East Antarctic coast,
includ ing an expanded early to middle Miocene succession not previously recovered
from the Antarctic continental shelf. Here,
we pre sent a facies model, distribution, and
paleoclimatic interpretation for the AND-2A
drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments,
including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was
periodically larger than the modern ice sheet.
(2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a
glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma.
While glacial minima at ca. 20.1–19.6 Ma
and ca. 19.3–18.7 Ma were characterized by
temperate margins, an increased abundance
of gravelly facies and diatomaceous siltstone
and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth with a grounding line traversing the drill site are recognized between ca. 20.2 and 17.6 Ma, and after ca. 15.4 Ma, with evidence of cold polar glaciers with ice shelves. The AND-2A core provides proximal evidence that during the middle Miocene climate transition, an ice sheet larger than the modern ice sheet was already present by ca. 14.7 Ma, ~1 m.y. earlier than generally inferred from deep-sea oxygen isotope records.
These fi ndings highlight the importance of
high-latitude ice-proximal records for the interpretation of far-fi eld proxies across major climate transitions.
Program (ANDRILL) drilled 1138.54 m of
strata ~10 km off the East Antarctic coast,
includ ing an expanded early to middle Miocene succession not previously recovered
from the Antarctic continental shelf. Here,
we pre sent a facies model, distribution, and
paleoclimatic interpretation for the AND-2A
drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments,
including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was
periodically larger than the modern ice sheet.
(2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a
glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma.
While glacial minima at ca. 20.1–19.6 Ma
and ca. 19.3–18.7 Ma were characterized by
temperate margins, an increased abundance
of gravelly facies and diatomaceous siltstone
and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth with a grounding line traversing the drill site are recognized between ca. 20.2 and 17.6 Ma, and after ca. 15.4 Ma, with evidence of cold polar glaciers with ice shelves. The AND-2A core provides proximal evidence that during the middle Miocene climate transition, an ice sheet larger than the modern ice sheet was already present by ca. 14.7 Ma, ~1 m.y. earlier than generally inferred from deep-sea oxygen isotope records.
These fi ndings highlight the importance of
high-latitude ice-proximal records for the interpretation of far-fi eld proxies across major climate transitions.
References
Acton, G., Florindo, F., Jovane, L., Lum, B., Ohneiser, C.,
Sagnotti, L., Strada, E., Verosub, K.L., Wilson, G.S.,
and the ANDRILL-SMS Science Team, 2008, Preliminary
integrated chronostratigraphy of the AND-2A
Core, ANDRILL Southern McMurdo Sound Project,
Antarctica, in Harwood, D.M., Florindo, F., Talarico,
F., and Levy, R.H., eds., Studies from the ANDRILL,
Southern McMurdo Sound Project, Antarctica: Terra
Antartica, v. 15, p. 211–220.
Bamber, J., Riva, R.E.M., Vermeersen, B.L.A., and LeBrocq ,
A.M., 2009, Reassessment of the potential sea-level
rise from a collapse of the West Antarctic Ice Sheet:
Science, v. 324, no. 5929, p. 901–903, doi: 10.1126/
science.1169335. Barrett, P.J., 2007, Cenozoic climate and sea level history
from glacimarine strata off the Victoria Land coast,
Cape Roberts Project, Antarctica, in Hambrey, M.J.,
Christoffersen, P., Glasser, N.F., and Hubbart, B., eds.,
Glacial Processes and Products: International Association
of Sedimentologists Special Publication 39,
p. 259–287.
Barrett, P.J., and Hambrey, M.J., 1992, Plio-Pleistocene
sedimentation in Ferrar Fjord, Antarctica: Sedimentology,
v. 39, p. 109–123, doi: 10.1111/j.1365-3091.1992.
tb01025.x.
Benn, D., 1996, Subglacial and subaqueous processes
near a glacier grounding line: Sedimentological evidence
from a former ice-dammed lake, Achnasheen
Scotland: Boreas, v. 25, p. 23–36, doi: 10.1111/
j.1502-3885.1996.tb00832.x.
Billups, K., and Schrag, D.P., 2002, Paleotemperatures and
ice volume of the past 27 Myr revisited with paired
Mg/Ca and 18O/16O measurements on benthic foraminif
era: Paleoceanography, v. 17, no. 1, PA000567, doi:
10.1029/2000PA000567.
Boulton, G.S., 1990, Sedimentary and sea level changes
during glacial cycles and their control on glacimarine
facies architecture, in Dowdeswell, J.A., and Scourse,
J.D., eds., Glaciomarine Environments: Processes and
Sediments: Geological Society of London Special Publication
53, p. 15–52.
Cai, J., Powell, R.D., Cowan, E.A., and Carlson, P.R., 1997,
Lithofacies and seismic-refl ection interpretation of
temperate glacimarine sedimentation in Tarr Inlet, Glacier
Bay, Alaska: Marine Geology, v. 143, p. 5–37, doi:
10.1016/S0025-3227(97)00088-1.
Cowan, E.A., Cai, J., Powell, R.D., Clark, J.D., and Pitcher,
J.N., 1997, Temperate glacimarine varves: An example
of Disenchantment Bay, southern Alaska: Journal of
Sedimentary Research, v. 67, p. 536–549.
Cowan, E.A., Seramur, K.C., Cai, J., and Powell, R.D.,
1999, Cyclic sedimentation produced by fl uctuation in
meltwater discharge, tides, and marine productivity
in an Alaskan fjord: Sedimentology, v. 46, p. 1109–
1126, doi: 10.1046/j.1365-3091.1999.00267.x.
DeConto, R.M., and Pollard, D., 2003, Rapid Cenozoic
glaciation of Antarctica induced by declining atmospheric
CO2: Nature, v. 421, p. 245–249, doi: 10.1038/
nature01290.
DeConto, R., Pollard, D., and Harwood, D., 2007, Sea ice
feedback and Cenozoic evolution of Antarctic climate
and ice sheets: Paleoceanography, v. 22, p. PA3214,
doi: 10.1029/2006PA001350.
Del Carlo, P., Panter, K.S., Bassett, K., Bracciali, L.,
Di Vincenzo, G., and Rocchi, S., 2009, The upper
lithostratigraphic unit of ANDRILL AND-2A core
(Southern McMurdo Sound, Antarctica): Local volcanic
sources, paleoenvironmental implications and
subsidence in the western Victoria Land Basin: Global
and Planetary Change, v. 69, p. 142–161, doi: 10.1016/
j.gloplacha.2009.09.002.
Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K., and
Rocchi, S., 2010, 40Ar/39Ar laser dating of vol canogenic
products from the AND-2A core (ANDRILL
Southern McMurdo Sound Project, Antarctica): Bulletin
of Volcanology, v. 72, p. 487–505, doi: 10.1007/
s00445-009-0337-z.
Domack, E.W., and Harris, P., 1998, A new depositional
model for ice shelves based upon sediment cores from
the Ross Sea and the MacRobertson shelf, Antarctica:
Annals of Glaciology, v. 27, p. 281–284.
Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane,
S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and
Prentice, M., 2005, Stability of the Larsen B ice shelf
on the Antarctic Peninsula during the Holocene Epoch:
Nature, v. 436, p. 681–685, doi: 10.1038/nature03908.
Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R., 1998,
Glacimarine sedimentary processes and facies on the
polar North Atlantic margins: Quaternary Science Reviews,
v. 17, p. 243–272, doi: 10.1016/S0277-3791
(97)00071-1.
Ehrmann, W., Setti, M., and Marinoni, L., 2005, Clay minerals
in Cenozoic sediments off Cape Roberts (McMurdo
Sound, Antarctica) reveal palaeoclimatic history:
Palaeo geography, Palaeoclimatology, Palaeoecology,
v. 229, p. 187–211, doi: 10.1016/j.palaeo.2005.06.022. Etienne, J.L., Glasser, N.F., and Hambrey, M.J., 2003,
Proglacial sediment-landform associations of a polythermal
glacier: Storglaciären, northern Sweden: Geografi
ska Annaler, v. 85, no. A, p. 149–164.
Evans, J., and Pudsey, C.J., 2002, Sedimentation associated
with Antarctic Peninsula ice shelves: Implications
for palaeoenvironmental reconstructions of
glacimarine sediments: Journal of the Geological
Society of London, v. 159, no. 3, p. 233–237, doi:
10.1144/0016-764901-125.
Fielding, C.R., Whittaker, J., Henrys, S.A., Wilson, T.J.,
and Naish, T.R., 2008a, Seismic facies and stratigraphy
of the Cenozoic succession in McMurdo Sound,
Antarctica: Implications for tectonic, climatic and
glacial history: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 260, p. 8–29, doi: 10.1016/
j.palaeo.2007.08.016.
Fielding, C.R., Atkins, C.B., Bassett, K.N., Browne, G.H.,
Dunbar, G.B., Field, B.D., Frank, T.D., Krissek,
L.A., Panter, K., Passchier, S., Pekar, S.F., and the
ANDRILL-SMS Science Team, 2008b, Sedimentology
and stratigraphy of the AND-2A core, ANDRILL
Southern McMurdo Sound, Project, Antarctica: Terra
Antartica, v. 15, p. 77–112.
Florindo, F., Bohaty, S.M., Erwin, P.S., Richter, C., Roberts ,
A.P., Whalen, P.A., and Whitehead, J.M., 2003, Magnetobiostratigraphic
chronology and palaeoenvironmental
history of Cenozoic sequences from ODP Sites
1165 and 1166, Prydz Bay, Antarctica: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 198,
p. 69–100, doi: 10.1016/S0031-0182(03)00395-X.
Griffi th, T.W., and Anderson, J.B., 1989, Climatic control of
sedimentation in bays and fjords of the northern Antarctic
Peninsula: Marine Geology, v. 85, p. 181–204,
doi: 10.1016/0025-3227(89)90153-9.
Hambrey, M.J., and McKelvey, B.C., 2000, Major Neogene
fl uctuations of the East Antarctic Ice Sheet: Stratigraphic
evidence from the Lambert glacier region: Geology,
v. 28, p. 887–890, doi: 10.1130/0091-7613(2000)28
<887:MNFOTE>2.0.CO;2.
Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser,
N.F., and Huddard, D., 1999, Debris entrainment and
transfer in polythermal valley glaciers: Journal of Glaciology,
v. 149, no. 45, p. 69–86.
Harwood, D.M., 1986, Diatom Biostratigraphy and Paleoecology
with a Cenozoic History of Antarctic Ice
Sheets [Ph.D. thesis]: Columbus, Ohio, The Ohio State
University, 592 p.
Harwood, D.M., and Webb, P.-N., 1998, Glacial transport of
diatoms in the Antarctic Sirius Group: Pliocene refrigerator:
GSA Today, v. 8, no. 4, p. 1–8.
Hemer, M.A., Post, A.L., O’Brien, P.E., Craven, M., Truswell,
E.M., Roberts, D., and Harris, P.T., 2007, Sedimentological
signatures of the sub–Amery Ice Shelf
circulation: Antarctic Science, v. 19, p. 497–506, doi:
10.1017/S0954102007000697.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.,
2005, Impacts of orbital forcing and atmospheric carbon
dioxide on Miocene ice-sheet expansion: Nature,
v. 438, p. 483–487, doi: 10.1038/nature04123.
Ishman, S.E., and Rieck, H.J., 1992, A late Neogene Antarctic
glacio-eustatic record, Victoria Land Basin margin,
Antarctica: Antarctic Research Series, v. 56, p. 327–348.
Joseph, L.H., Rea, D.K., van der Pluijm, B.A., and
Gleason , D.A., 2002, Antarctic environmental variability
since the late Miocene: ODP Site 745, the
East Kerguelen sediment drift: Earth and Planetary
Science Letters, v. 201, p. 127–142, doi: 10.1016/
S0012-821X(02)00661-1.
Khatwa, A., and Tulaczyk, S., 2001, Microstructural interpretations
of modern and Pleistocene subglacially deformed
sediments: The relative role of parent material
and subglacial processes: Journal of Quaternary Science,
v. 16, no. 6, p. 507–517, doi: 10.1002/jqs.609.
Lear, C.H., Elderfi eld, H., and Wilson, P.A., 2000, Cenozoic
deep-sea temperatures and global ice volumes from
Mg/Ca in benthic foraminiferal calcite: Science, v. 287,
p. 269–272, doi: 10.1126/science.287.5451.269.
Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A.,
2004, Late Eocene to early Miocene ice-sheet dynamics
and the global carbon cycle: Paleoceanography,
v. 19, no. 4, p. PA4015, doi: 10.1029/2004PA001039. Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and
Rosenthal, Y., 2008, Cooling and ice growth across the
Eocene-Oligocene transition: Geology, v. 36, p. 251–
254, doi: 10.1130/G24584A.1.
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming,
S.R., and Machlus, M.L., 2007, Major middle Miocene
global climate change: Evidence from East Antarctica
and the Transantarctic Mountains: Geological Society
of America Bulletin, v. 119, p. 1449–1461.
Licht, K.J., Dunbar, N.W., Andrews, J.T., and Jennings,
A.E., 1999, Distinguishing subglacial till and glacial
marine diamictons in the western Ross Sea, Antarctica:
Implications for a Last Glacial Maximum grounding
line: Geological Society of America Bulletin,
v. 111, p. 91–103, doi: 10.1130/0016-7606(1999)111
<0091:DSTAGM>2.3.CO;2.
Lowe, A.L., and Anderson, J.B., 2002, Late Quaternary
advance and retreat of the West Antarctic Ice Sheet
in Pine Island Bay, Antarctica: Quaternary Science
Reviews, v. 21, p. 1879–1897, doi: 10.1016/
S0277-3791(02)00006-9.
Lønne, I., 1995, Sedimentary facies and depositional architecture
of ice-contact glaciomarine systems: Sedimentary
Geology, v. 98, p. 13–43, doi: 10.1016/0037-0738
(95)00025-4.
MacKiewicz, N.E., Powell, R.D., Carlson, P.R., and Molnia ,
B.F., 1984, Interlaminated ice-proximal glacimarine
sediments in Muir Inlet, Alaska: Marine Geology,
v. 57, no. 1–4, p. 113–147, doi: 10.1016/0025-3227
(84)90197-X.
Marchant, D.R., Denton, G.H., Sugden, D.E., and Swisher,
C.C., III, 1993, Miocene glacial stratigraphy and landscape
evolution of the western Asgard Range, Antarctica:
Geografi ska Annaler, v. 75A, no. 4, p. 303–330,
doi: 10.2307/521205.
McCarroll, D., and Rijsdijk, K., 2003, Deformation styles as
a key for unlocking glacial depositional environments:
Journal of Quaternary Science, v. 18, p. 473–489, doi:
10.1002/jqs.780.
McKay, R.M., Dunbar, G.B., Naish, T., Barrett, P.J., Carter,
L., and Harper, M., 2008, Retreat history of the Ross
Ice Sheet (Shelf) since the Last Glacial Maximum from
deep-basin sediment cores around Ross Island: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 260,
p. 245–261, doi: 10.1016/j.palaeo.2007.08.015.
McKay, R.M., Browne, G., Carter, L., Cowan, E., Dunbar,
G., Krissek, L., Naish, T., Powell, R., Reed, J., Talarico,
F., and Wilch, T., 2009, The stratigraphic signature of
the late Cenozoic Antarctica Ice Sheets in the Ross
Embayments: Geological Society of America Bulletin,
v. 121, p. 1537–1561, doi: 10.1130/B26540.1.
McKelvey, B.C., 1981, The lithologic logs of DVDP cores
10 and 11, eastern Taylor Valley, in McGinnis, L.D.,
ed., Dry Valley Drilling Project: Antarctic Research
Series : Washington, D.C., American Geophysical
Union, p. 63–94.
McKelvey, B.C., 1982, Late Cenozoic marine and terrestrial
glacial sedimentation in eastern Taylor Valley, Southern
Victoria Land, in Craddock, C., ed., Proceedings
of the Third Symposium on Antarctic Geology and
Geophysics: Madison, Wisconsin, The University of
Wisconsin Press, p. 1109–1116.
Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991, Unlocking
the ice house: Oligocene-Miocene oxygen
isotopes, eustasy, and margin erosion: Journal of Geophysical
Research, v. 96, p. 6829–6848, doi: 10.1029/
90JB02015.
Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party,
and Members of the New Jersey Coastal Plain Drilling
Project, 1996, Drilling and dating New Jersey Oligocene-
Miocene sequences: Ice volume, global sea level,
and Exxon records: Science, v. 271, p. 1092–1094.
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D.,
Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer,
B.S., Christie-Blick, N., and Pekar, S.F., 2005, The
Phanerozoic record of global sea-level change: Science,
v. 310, p. 1293–1298, doi: 10.1126/science.1116412.
Moncrieff, A.C.M., 1989, Classifi cation of poorly-sorted
sedimentary rocks: Sedimentary Geology, v. 65,
p. 191–194, doi: 10.1016/0037-0738(89)90015-8.
Naish, T.R., and 32 others, 2001, Orbitally induced oscillations
in the East Antarctic Ice Sheet at the Oligocene/ Miocene boundary: Nature, v. 413, p. 719–723, doi:
10.1038/35099534.
Naish, T., and 55 others, 2009, Obliquity-paced Pliocene West
Antarctic Ice Sheet oscillations: Nature, v. 458, p. 322–
328, doi: 10.1038/nature07867.
Ó Cofaigh, C., and Dowdeswell, J.A., 2001, Laminated sediments
in glacimarine environments: Diagnostic criteria
for their interpretation: Quaternary Science Reviews,
v. 20, p. 1411–1436.
Ó Cofaigh, C., Dowdeswell, J.A., and Grobe, H., 2001, Holocene
glacimarine sedimentation, inner Scoresby Sund,
East Greenland: The infl uence of fast-fl owing ice-sheet
outlet glaciers: Marine Geology, v. 175, p. 103–129.
Pagani, M., Zachos, J., Freeman, K.H., Bohaty, S., and
Tipple , B., 2005, Marked change in atmospheric carbon
dioxide concentrations during the Oligocene: Science,
v. 309, p. 600–603, doi: 10.1126/science.1110063.
Panter, K.S., Talarico, F., Bassett, K., Del Carlo, P., Field,
B., Frank, T., Hoffman, S., Kuhn, G., Reichelt, L.,
Sandroni, S., Tavini, M., Bracciali, L., Cornamusini,
G., von Eynatten, H., and Rocchi, R., 2008, Petrologic
and geochemical composition of the AND-2A
core, ANDRILL Southern McMurdo Sound Project,
Antarctica, in Harwood, D.M., Florindo, F., Talarico,
F., and Levy, R.H., eds., Studies from the ANDRILL,
Southern McMurdo Sound Project, Antarctica: Terra
Antarctica, v. 15, p. 147–192.
Passchier, S., and Krissek, L.A., 2008, Oligocene–Miocene
Antarctic continental weathering record and paleoclimatic
implications, Cape Roberts Drilling Project,
Ross Sea, Antarctica: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 260, p. 30–40, doi: 10.1016/
j.palaeo.2007.08.012.
Passchier, S., Wilson, T.J., and Paulsen, T.S., 1998, Origin of
breccias in the CRP-1 core: Terra Antartica, v. 5, no. 3,
p. 401–409.
Passchier, S., O’Brien, P.E., Damuth, J.E., Januszczack,
N., Handwerger, D.A., and Whitehead, J.M., 2003,
Pliocene-Pleistocene glaciomarine sedimentation
in eastern Prydz Bay and development of the Prydz
trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica:
Marine Geology, v. 199, p. 179–305.
Pekar, S.F., and DeConto, R.M., 2006, High-resolution icevolume
estimates for the early Miocene: Evidence for
a dynamic ice sheet in Antarctica: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 231, p. 101–109,
doi: 10.1016/j.palaeo.2005.07.027.
Powell, R.D., 1981, Sedimentation conditions in Taylor
Valley, Antarctica, inferred from textural analysis of DVDP cores, in McGinnis, L.D., ed., Dry Valley Drilling
Project: Antarctic Research Series: Washington,
D.C., American Geophysical Union, p. 331–349.
Powell, R.D., and Cooper, J.M., 2002, A glacial sequence
stratigraphic model for temperate, glaciated continental
shelves, in Dowdeswell, J.A., and Ó Cofaigh,
C., eds., Glacier-Infl uenced Sedimentation on High-
Latitude Continental Margins: Geological Society of
London Special Publication 203, p. 215–244.
Powell, R.D., and Molnia, B.F., 1989, Glacimarine sedimentary
processes, facies and morphology of the southsoutheast
Alaska shelf and fjords: Marine Geology,
v. 85, p. 359–390, doi: 10.1016/0025-3227(89)90160-6.
Prentice, M.L., Bockheim, J.G., Wilson, S.C., Burckle, L.H.,
Hodell, D.A., Schlüchter, C., and Kellogg, D.E., 1993,
Late Neogene Antarctic glacial history: Evidence from
Central Wright Valley, in Kennett, J.P., and Warnke,
D.A., eds., The Antarctic Paleoenvironment: A Perspective
on Global Change, Part 2: Antarctic Research
Series: Washington, D.C., American Geophysical
Union, p. 207–250.
Rebesco, M., Camerlenghi, A., Geletti, R., and Canals, M.,
2006, Margin architecture reveals the transition to the
modern Antarctic ice sheet ca. 3 Ma: Geology, v. 34,
no. 4, p. 301–304, doi: 10.1130/G22000.1.
Riddle, M.J., Craven, M., Goldsworthy, P.M., and Carsey,
F., 2007, A diverse benthic assemblage 100 km from
open water under the Amery Ice Shelf, Antarctica:
Paleoceanography, v. 22, p. PA1204, doi: 10.1029/
2006PA001327.
Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2004, Middle
Miocene Southern Ocean cooling and Antarctic cryosphere
expansion: Science, v. 305, p. 1766–1770, doi:
10.1126/science.1100061.
Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2008, Middle
Miocene ice sheet dynamics, deep-sea temperatures,
and carbon cycling: A Southern Ocean perspective:
Geochemistry, Geophysics, Geosystems, v. 9, no. 2,
Q02006, p. 1–14.
Sugden, D., and Denton, G., 2004, Cenozoic landscape evolution
of the Convoy Range to Mackay Glacier area,
Transantarctic Mountains: Onshore to offshore synthesis:
Geological Society of America Bulletin, v. 116,
p. 840–857, doi: 10.1130/B25356.1.
Svendsen, J.I., Mangerud, J., Elverhøi, A., Solheim, A., and
Schüttenhelm, R.T.E., 1992, The late Weichselian glacial
maximum on western Spitsbergen inferred from
offshore sediment cores: Marine Geology, v. 104,
p. 1–17, doi: 10.1016/0025-3227(92)90081-R. Tripati, A.K., Roberts, C.D., and Eagle, R.A., 2009, Coupling
of CO2 and ice sheet stability over major
climate transitions of the last 20 million years: Science,
v. 326, no. 5958, p. 1394–1397, doi: 10.1126/
science.1178296.
van der Meer, J.J.M., 1993, Microscopic evidence of subglacial
deformation: Quaternary Science Reviews, v. 12,
p. 553–587, doi: 10.1016/0277-3791(93)90069-X.
Warny, S., Askin, R.A., Hannah, M.J., Mohr, B.A.R., Raine,
J.I., Harwood, D.M., Florindo, F., and the SMS Science
Team, 2009, Palynomorphs from a sediment core
reveal a sudden remarkably warm Antarctica during
the middle Miocene: Geology, v. 37, no. 10, p. 955–
958, doi: 10.1130/G30139A.1.
Webb, P.-N., and Wrenn, J.H., 1982, Upper Cenozoic micropaleontology
and biostratigraphy of eastern Taylor
Valley, Antarctica, in Craddock, C., ed., Proceedings
of the Third Symposium on Antarctic Geology and
Geo physics: Madison, Wisconsin, The University of
Wisconsin Press, p. 1117–1122.
Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillenbrand,
C.-D., Quilty, P.Q., Hart, C., Taviani, M.,
Thorn, V., and McMinn, A., 2006, Late Miocene paleoenvironment
of the Lambert graben embayment, East
Antarctica, evident from: Mollusc paleontology, sedimentology
and geochemistry: Global and Planetary
Change, v. 50, no. 3–4, p. 127–147.
Wilson, G., Pekar, S., Naish, T., Passchier, S., and DeConto,
R., 2009, The Oligocene-Miocene boundary—Antarctic
climate response to orbital forcing, in Florindo,
F., and Seigert, M., eds., Antarctic Climate Evolution:
Developments in Earth & Environmental Sciences,
Volume 8: Amsterdam, The Netherlands, Elsevier,
p. 444–465.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups,
K., 2001, Trends, rhythms, and aberrations in global
climate: 65 Ma to present: Science, v. 292, p. 686–693.
Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008, An early
Cenozoic perspective on greenhouse warming and
carbon-cycle dynamics: Nature, v. 451, p. 279–283,
doi: 10.1038/nature06588.
Sagnotti, L., Strada, E., Verosub, K.L., Wilson, G.S.,
and the ANDRILL-SMS Science Team, 2008, Preliminary
integrated chronostratigraphy of the AND-2A
Core, ANDRILL Southern McMurdo Sound Project,
Antarctica, in Harwood, D.M., Florindo, F., Talarico,
F., and Levy, R.H., eds., Studies from the ANDRILL,
Southern McMurdo Sound Project, Antarctica: Terra
Antartica, v. 15, p. 211–220.
Bamber, J., Riva, R.E.M., Vermeersen, B.L.A., and LeBrocq ,
A.M., 2009, Reassessment of the potential sea-level
rise from a collapse of the West Antarctic Ice Sheet:
Science, v. 324, no. 5929, p. 901–903, doi: 10.1126/
science.1169335. Barrett, P.J., 2007, Cenozoic climate and sea level history
from glacimarine strata off the Victoria Land coast,
Cape Roberts Project, Antarctica, in Hambrey, M.J.,
Christoffersen, P., Glasser, N.F., and Hubbart, B., eds.,
Glacial Processes and Products: International Association
of Sedimentologists Special Publication 39,
p. 259–287.
Barrett, P.J., and Hambrey, M.J., 1992, Plio-Pleistocene
sedimentation in Ferrar Fjord, Antarctica: Sedimentology,
v. 39, p. 109–123, doi: 10.1111/j.1365-3091.1992.
tb01025.x.
Benn, D., 1996, Subglacial and subaqueous processes
near a glacier grounding line: Sedimentological evidence
from a former ice-dammed lake, Achnasheen
Scotland: Boreas, v. 25, p. 23–36, doi: 10.1111/
j.1502-3885.1996.tb00832.x.
Billups, K., and Schrag, D.P., 2002, Paleotemperatures and
ice volume of the past 27 Myr revisited with paired
Mg/Ca and 18O/16O measurements on benthic foraminif
era: Paleoceanography, v. 17, no. 1, PA000567, doi:
10.1029/2000PA000567.
Boulton, G.S., 1990, Sedimentary and sea level changes
during glacial cycles and their control on glacimarine
facies architecture, in Dowdeswell, J.A., and Scourse,
J.D., eds., Glaciomarine Environments: Processes and
Sediments: Geological Society of London Special Publication
53, p. 15–52.
Cai, J., Powell, R.D., Cowan, E.A., and Carlson, P.R., 1997,
Lithofacies and seismic-refl ection interpretation of
temperate glacimarine sedimentation in Tarr Inlet, Glacier
Bay, Alaska: Marine Geology, v. 143, p. 5–37, doi:
10.1016/S0025-3227(97)00088-1.
Cowan, E.A., Cai, J., Powell, R.D., Clark, J.D., and Pitcher,
J.N., 1997, Temperate glacimarine varves: An example
of Disenchantment Bay, southern Alaska: Journal of
Sedimentary Research, v. 67, p. 536–549.
Cowan, E.A., Seramur, K.C., Cai, J., and Powell, R.D.,
1999, Cyclic sedimentation produced by fl uctuation in
meltwater discharge, tides, and marine productivity
in an Alaskan fjord: Sedimentology, v. 46, p. 1109–
1126, doi: 10.1046/j.1365-3091.1999.00267.x.
DeConto, R.M., and Pollard, D., 2003, Rapid Cenozoic
glaciation of Antarctica induced by declining atmospheric
CO2: Nature, v. 421, p. 245–249, doi: 10.1038/
nature01290.
DeConto, R., Pollard, D., and Harwood, D., 2007, Sea ice
feedback and Cenozoic evolution of Antarctic climate
and ice sheets: Paleoceanography, v. 22, p. PA3214,
doi: 10.1029/2006PA001350.
Del Carlo, P., Panter, K.S., Bassett, K., Bracciali, L.,
Di Vincenzo, G., and Rocchi, S., 2009, The upper
lithostratigraphic unit of ANDRILL AND-2A core
(Southern McMurdo Sound, Antarctica): Local volcanic
sources, paleoenvironmental implications and
subsidence in the western Victoria Land Basin: Global
and Planetary Change, v. 69, p. 142–161, doi: 10.1016/
j.gloplacha.2009.09.002.
Di Vincenzo, G., Bracciali, L., Del Carlo, P., Panter, K., and
Rocchi, S., 2010, 40Ar/39Ar laser dating of vol canogenic
products from the AND-2A core (ANDRILL
Southern McMurdo Sound Project, Antarctica): Bulletin
of Volcanology, v. 72, p. 487–505, doi: 10.1007/
s00445-009-0337-z.
Domack, E.W., and Harris, P., 1998, A new depositional
model for ice shelves based upon sediment cores from
the Ross Sea and the MacRobertson shelf, Antarctica:
Annals of Glaciology, v. 27, p. 281–284.
Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane,
S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and
Prentice, M., 2005, Stability of the Larsen B ice shelf
on the Antarctic Peninsula during the Holocene Epoch:
Nature, v. 436, p. 681–685, doi: 10.1038/nature03908.
Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R., 1998,
Glacimarine sedimentary processes and facies on the
polar North Atlantic margins: Quaternary Science Reviews,
v. 17, p. 243–272, doi: 10.1016/S0277-3791
(97)00071-1.
Ehrmann, W., Setti, M., and Marinoni, L., 2005, Clay minerals
in Cenozoic sediments off Cape Roberts (McMurdo
Sound, Antarctica) reveal palaeoclimatic history:
Palaeo geography, Palaeoclimatology, Palaeoecology,
v. 229, p. 187–211, doi: 10.1016/j.palaeo.2005.06.022. Etienne, J.L., Glasser, N.F., and Hambrey, M.J., 2003,
Proglacial sediment-landform associations of a polythermal
glacier: Storglaciären, northern Sweden: Geografi
ska Annaler, v. 85, no. A, p. 149–164.
Evans, J., and Pudsey, C.J., 2002, Sedimentation associated
with Antarctic Peninsula ice shelves: Implications
for palaeoenvironmental reconstructions of
glacimarine sediments: Journal of the Geological
Society of London, v. 159, no. 3, p. 233–237, doi:
10.1144/0016-764901-125.
Fielding, C.R., Whittaker, J., Henrys, S.A., Wilson, T.J.,
and Naish, T.R., 2008a, Seismic facies and stratigraphy
of the Cenozoic succession in McMurdo Sound,
Antarctica: Implications for tectonic, climatic and
glacial history: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 260, p. 8–29, doi: 10.1016/
j.palaeo.2007.08.016.
Fielding, C.R., Atkins, C.B., Bassett, K.N., Browne, G.H.,
Dunbar, G.B., Field, B.D., Frank, T.D., Krissek,
L.A., Panter, K., Passchier, S., Pekar, S.F., and the
ANDRILL-SMS Science Team, 2008b, Sedimentology
and stratigraphy of the AND-2A core, ANDRILL
Southern McMurdo Sound, Project, Antarctica: Terra
Antartica, v. 15, p. 77–112.
Florindo, F., Bohaty, S.M., Erwin, P.S., Richter, C., Roberts ,
A.P., Whalen, P.A., and Whitehead, J.M., 2003, Magnetobiostratigraphic
chronology and palaeoenvironmental
history of Cenozoic sequences from ODP Sites
1165 and 1166, Prydz Bay, Antarctica: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 198,
p. 69–100, doi: 10.1016/S0031-0182(03)00395-X.
Griffi th, T.W., and Anderson, J.B., 1989, Climatic control of
sedimentation in bays and fjords of the northern Antarctic
Peninsula: Marine Geology, v. 85, p. 181–204,
doi: 10.1016/0025-3227(89)90153-9.
Hambrey, M.J., and McKelvey, B.C., 2000, Major Neogene
fl uctuations of the East Antarctic Ice Sheet: Stratigraphic
evidence from the Lambert glacier region: Geology,
v. 28, p. 887–890, doi: 10.1130/0091-7613(2000)28
<887:MNFOTE>2.0.CO;2.
Hambrey, M.J., Bennett, M.R., Dowdeswell, J.A., Glasser,
N.F., and Huddard, D., 1999, Debris entrainment and
transfer in polythermal valley glaciers: Journal of Glaciology,
v. 149, no. 45, p. 69–86.
Harwood, D.M., 1986, Diatom Biostratigraphy and Paleoecology
with a Cenozoic History of Antarctic Ice
Sheets [Ph.D. thesis]: Columbus, Ohio, The Ohio State
University, 592 p.
Harwood, D.M., and Webb, P.-N., 1998, Glacial transport of
diatoms in the Antarctic Sirius Group: Pliocene refrigerator:
GSA Today, v. 8, no. 4, p. 1–8.
Hemer, M.A., Post, A.L., O’Brien, P.E., Craven, M., Truswell,
E.M., Roberts, D., and Harris, P.T., 2007, Sedimentological
signatures of the sub–Amery Ice Shelf
circulation: Antarctic Science, v. 19, p. 497–506, doi:
10.1017/S0954102007000697.
Holbourn, A., Kuhnt, W., Schulz, M., and Erlenkeuser, H.,
2005, Impacts of orbital forcing and atmospheric carbon
dioxide on Miocene ice-sheet expansion: Nature,
v. 438, p. 483–487, doi: 10.1038/nature04123.
Ishman, S.E., and Rieck, H.J., 1992, A late Neogene Antarctic
glacio-eustatic record, Victoria Land Basin margin,
Antarctica: Antarctic Research Series, v. 56, p. 327–348.
Joseph, L.H., Rea, D.K., van der Pluijm, B.A., and
Gleason , D.A., 2002, Antarctic environmental variability
since the late Miocene: ODP Site 745, the
East Kerguelen sediment drift: Earth and Planetary
Science Letters, v. 201, p. 127–142, doi: 10.1016/
S0012-821X(02)00661-1.
Khatwa, A., and Tulaczyk, S., 2001, Microstructural interpretations
of modern and Pleistocene subglacially deformed
sediments: The relative role of parent material
and subglacial processes: Journal of Quaternary Science,
v. 16, no. 6, p. 507–517, doi: 10.1002/jqs.609.
Lear, C.H., Elderfi eld, H., and Wilson, P.A., 2000, Cenozoic
deep-sea temperatures and global ice volumes from
Mg/Ca in benthic foraminiferal calcite: Science, v. 287,
p. 269–272, doi: 10.1126/science.287.5451.269.
Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A.,
2004, Late Eocene to early Miocene ice-sheet dynamics
and the global carbon cycle: Paleoceanography,
v. 19, no. 4, p. PA4015, doi: 10.1029/2004PA001039. Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and
Rosenthal, Y., 2008, Cooling and ice growth across the
Eocene-Oligocene transition: Geology, v. 36, p. 251–
254, doi: 10.1130/G24584A.1.
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hemming,
S.R., and Machlus, M.L., 2007, Major middle Miocene
global climate change: Evidence from East Antarctica
and the Transantarctic Mountains: Geological Society
of America Bulletin, v. 119, p. 1449–1461.
Licht, K.J., Dunbar, N.W., Andrews, J.T., and Jennings,
A.E., 1999, Distinguishing subglacial till and glacial
marine diamictons in the western Ross Sea, Antarctica:
Implications for a Last Glacial Maximum grounding
line: Geological Society of America Bulletin,
v. 111, p. 91–103, doi: 10.1130/0016-7606(1999)111
<0091:DSTAGM>2.3.CO;2.
Lowe, A.L., and Anderson, J.B., 2002, Late Quaternary
advance and retreat of the West Antarctic Ice Sheet
in Pine Island Bay, Antarctica: Quaternary Science
Reviews, v. 21, p. 1879–1897, doi: 10.1016/
S0277-3791(02)00006-9.
Lønne, I., 1995, Sedimentary facies and depositional architecture
of ice-contact glaciomarine systems: Sedimentary
Geology, v. 98, p. 13–43, doi: 10.1016/0037-0738
(95)00025-4.
MacKiewicz, N.E., Powell, R.D., Carlson, P.R., and Molnia ,
B.F., 1984, Interlaminated ice-proximal glacimarine
sediments in Muir Inlet, Alaska: Marine Geology,
v. 57, no. 1–4, p. 113–147, doi: 10.1016/0025-3227
(84)90197-X.
Marchant, D.R., Denton, G.H., Sugden, D.E., and Swisher,
C.C., III, 1993, Miocene glacial stratigraphy and landscape
evolution of the western Asgard Range, Antarctica:
Geografi ska Annaler, v. 75A, no. 4, p. 303–330,
doi: 10.2307/521205.
McCarroll, D., and Rijsdijk, K., 2003, Deformation styles as
a key for unlocking glacial depositional environments:
Journal of Quaternary Science, v. 18, p. 473–489, doi:
10.1002/jqs.780.
McKay, R.M., Dunbar, G.B., Naish, T., Barrett, P.J., Carter,
L., and Harper, M., 2008, Retreat history of the Ross
Ice Sheet (Shelf) since the Last Glacial Maximum from
deep-basin sediment cores around Ross Island: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 260,
p. 245–261, doi: 10.1016/j.palaeo.2007.08.015.
McKay, R.M., Browne, G., Carter, L., Cowan, E., Dunbar,
G., Krissek, L., Naish, T., Powell, R., Reed, J., Talarico,
F., and Wilch, T., 2009, The stratigraphic signature of
the late Cenozoic Antarctica Ice Sheets in the Ross
Embayments: Geological Society of America Bulletin,
v. 121, p. 1537–1561, doi: 10.1130/B26540.1.
McKelvey, B.C., 1981, The lithologic logs of DVDP cores
10 and 11, eastern Taylor Valley, in McGinnis, L.D.,
ed., Dry Valley Drilling Project: Antarctic Research
Series : Washington, D.C., American Geophysical
Union, p. 63–94.
McKelvey, B.C., 1982, Late Cenozoic marine and terrestrial
glacial sedimentation in eastern Taylor Valley, Southern
Victoria Land, in Craddock, C., ed., Proceedings
of the Third Symposium on Antarctic Geology and
Geophysics: Madison, Wisconsin, The University of
Wisconsin Press, p. 1109–1116.
Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991, Unlocking
the ice house: Oligocene-Miocene oxygen
isotopes, eustasy, and margin erosion: Journal of Geophysical
Research, v. 96, p. 6829–6848, doi: 10.1029/
90JB02015.
Miller, K.G., Mountain, G.S., the Leg 150 Shipboard Party,
and Members of the New Jersey Coastal Plain Drilling
Project, 1996, Drilling and dating New Jersey Oligocene-
Miocene sequences: Ice volume, global sea level,
and Exxon records: Science, v. 271, p. 1092–1094.
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D.,
Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer,
B.S., Christie-Blick, N., and Pekar, S.F., 2005, The
Phanerozoic record of global sea-level change: Science,
v. 310, p. 1293–1298, doi: 10.1126/science.1116412.
Moncrieff, A.C.M., 1989, Classifi cation of poorly-sorted
sedimentary rocks: Sedimentary Geology, v. 65,
p. 191–194, doi: 10.1016/0037-0738(89)90015-8.
Naish, T.R., and 32 others, 2001, Orbitally induced oscillations
in the East Antarctic Ice Sheet at the Oligocene/ Miocene boundary: Nature, v. 413, p. 719–723, doi:
10.1038/35099534.
Naish, T., and 55 others, 2009, Obliquity-paced Pliocene West
Antarctic Ice Sheet oscillations: Nature, v. 458, p. 322–
328, doi: 10.1038/nature07867.
Ó Cofaigh, C., and Dowdeswell, J.A., 2001, Laminated sediments
in glacimarine environments: Diagnostic criteria
for their interpretation: Quaternary Science Reviews,
v. 20, p. 1411–1436.
Ó Cofaigh, C., Dowdeswell, J.A., and Grobe, H., 2001, Holocene
glacimarine sedimentation, inner Scoresby Sund,
East Greenland: The infl uence of fast-fl owing ice-sheet
outlet glaciers: Marine Geology, v. 175, p. 103–129.
Pagani, M., Zachos, J., Freeman, K.H., Bohaty, S., and
Tipple , B., 2005, Marked change in atmospheric carbon
dioxide concentrations during the Oligocene: Science,
v. 309, p. 600–603, doi: 10.1126/science.1110063.
Panter, K.S., Talarico, F., Bassett, K., Del Carlo, P., Field,
B., Frank, T., Hoffman, S., Kuhn, G., Reichelt, L.,
Sandroni, S., Tavini, M., Bracciali, L., Cornamusini,
G., von Eynatten, H., and Rocchi, R., 2008, Petrologic
and geochemical composition of the AND-2A
core, ANDRILL Southern McMurdo Sound Project,
Antarctica, in Harwood, D.M., Florindo, F., Talarico,
F., and Levy, R.H., eds., Studies from the ANDRILL,
Southern McMurdo Sound Project, Antarctica: Terra
Antarctica, v. 15, p. 147–192.
Passchier, S., and Krissek, L.A., 2008, Oligocene–Miocene
Antarctic continental weathering record and paleoclimatic
implications, Cape Roberts Drilling Project,
Ross Sea, Antarctica: Palaeogeography, Palaeoclimatology,
Palaeoecology, v. 260, p. 30–40, doi: 10.1016/
j.palaeo.2007.08.012.
Passchier, S., Wilson, T.J., and Paulsen, T.S., 1998, Origin of
breccias in the CRP-1 core: Terra Antartica, v. 5, no. 3,
p. 401–409.
Passchier, S., O’Brien, P.E., Damuth, J.E., Januszczack,
N., Handwerger, D.A., and Whitehead, J.M., 2003,
Pliocene-Pleistocene glaciomarine sedimentation
in eastern Prydz Bay and development of the Prydz
trough-mouth fan, ODP Sites 1166 and 1167, East Antarctica:
Marine Geology, v. 199, p. 179–305.
Pekar, S.F., and DeConto, R.M., 2006, High-resolution icevolume
estimates for the early Miocene: Evidence for
a dynamic ice sheet in Antarctica: Palaeogeography,
Palaeoclimatology, Palaeoecology, v. 231, p. 101–109,
doi: 10.1016/j.palaeo.2005.07.027.
Powell, R.D., 1981, Sedimentation conditions in Taylor
Valley, Antarctica, inferred from textural analysis of DVDP cores, in McGinnis, L.D., ed., Dry Valley Drilling
Project: Antarctic Research Series: Washington,
D.C., American Geophysical Union, p. 331–349.
Powell, R.D., and Cooper, J.M., 2002, A glacial sequence
stratigraphic model for temperate, glaciated continental
shelves, in Dowdeswell, J.A., and Ó Cofaigh,
C., eds., Glacier-Infl uenced Sedimentation on High-
Latitude Continental Margins: Geological Society of
London Special Publication 203, p. 215–244.
Powell, R.D., and Molnia, B.F., 1989, Glacimarine sedimentary
processes, facies and morphology of the southsoutheast
Alaska shelf and fjords: Marine Geology,
v. 85, p. 359–390, doi: 10.1016/0025-3227(89)90160-6.
Prentice, M.L., Bockheim, J.G., Wilson, S.C., Burckle, L.H.,
Hodell, D.A., Schlüchter, C., and Kellogg, D.E., 1993,
Late Neogene Antarctic glacial history: Evidence from
Central Wright Valley, in Kennett, J.P., and Warnke,
D.A., eds., The Antarctic Paleoenvironment: A Perspective
on Global Change, Part 2: Antarctic Research
Series: Washington, D.C., American Geophysical
Union, p. 207–250.
Rebesco, M., Camerlenghi, A., Geletti, R., and Canals, M.,
2006, Margin architecture reveals the transition to the
modern Antarctic ice sheet ca. 3 Ma: Geology, v. 34,
no. 4, p. 301–304, doi: 10.1130/G22000.1.
Riddle, M.J., Craven, M., Goldsworthy, P.M., and Carsey,
F., 2007, A diverse benthic assemblage 100 km from
open water under the Amery Ice Shelf, Antarctica:
Paleoceanography, v. 22, p. PA1204, doi: 10.1029/
2006PA001327.
Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2004, Middle
Miocene Southern Ocean cooling and Antarctic cryosphere
expansion: Science, v. 305, p. 1766–1770, doi:
10.1126/science.1100061.
Shevenell, A.E., Kennett, J.P., and Lea, D.W., 2008, Middle
Miocene ice sheet dynamics, deep-sea temperatures,
and carbon cycling: A Southern Ocean perspective:
Geochemistry, Geophysics, Geosystems, v. 9, no. 2,
Q02006, p. 1–14.
Sugden, D., and Denton, G., 2004, Cenozoic landscape evolution
of the Convoy Range to Mackay Glacier area,
Transantarctic Mountains: Onshore to offshore synthesis:
Geological Society of America Bulletin, v. 116,
p. 840–857, doi: 10.1130/B25356.1.
Svendsen, J.I., Mangerud, J., Elverhøi, A., Solheim, A., and
Schüttenhelm, R.T.E., 1992, The late Weichselian glacial
maximum on western Spitsbergen inferred from
offshore sediment cores: Marine Geology, v. 104,
p. 1–17, doi: 10.1016/0025-3227(92)90081-R. Tripati, A.K., Roberts, C.D., and Eagle, R.A., 2009, Coupling
of CO2 and ice sheet stability over major
climate transitions of the last 20 million years: Science,
v. 326, no. 5958, p. 1394–1397, doi: 10.1126/
science.1178296.
van der Meer, J.J.M., 1993, Microscopic evidence of subglacial
deformation: Quaternary Science Reviews, v. 12,
p. 553–587, doi: 10.1016/0277-3791(93)90069-X.
Warny, S., Askin, R.A., Hannah, M.J., Mohr, B.A.R., Raine,
J.I., Harwood, D.M., Florindo, F., and the SMS Science
Team, 2009, Palynomorphs from a sediment core
reveal a sudden remarkably warm Antarctica during
the middle Miocene: Geology, v. 37, no. 10, p. 955–
958, doi: 10.1130/G30139A.1.
Webb, P.-N., and Wrenn, J.H., 1982, Upper Cenozoic micropaleontology
and biostratigraphy of eastern Taylor
Valley, Antarctica, in Craddock, C., ed., Proceedings
of the Third Symposium on Antarctic Geology and
Geo physics: Madison, Wisconsin, The University of
Wisconsin Press, p. 1117–1122.
Whitehead, J.M., Ehrmann, W., Harwood, D.M., Hillenbrand,
C.-D., Quilty, P.Q., Hart, C., Taviani, M.,
Thorn, V., and McMinn, A., 2006, Late Miocene paleoenvironment
of the Lambert graben embayment, East
Antarctica, evident from: Mollusc paleontology, sedimentology
and geochemistry: Global and Planetary
Change, v. 50, no. 3–4, p. 127–147.
Wilson, G., Pekar, S., Naish, T., Passchier, S., and DeConto,
R., 2009, The Oligocene-Miocene boundary—Antarctic
climate response to orbital forcing, in Florindo,
F., and Seigert, M., eds., Antarctic Climate Evolution:
Developments in Earth & Environmental Sciences,
Volume 8: Amsterdam, The Netherlands, Elsevier,
p. 444–465.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups,
K., 2001, Trends, rhythms, and aberrations in global
climate: 65 Ma to present: Science, v. 292, p. 686–693.
Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008, An early
Cenozoic perspective on greenhouse warming and
carbon-cycle dynamics: Nature, v. 451, p. 279–283,
doi: 10.1038/nature06588.
Type
article
File(s)
No Thumbnail Available
Name
Passchier_et_al.pdf
Size
1.73 MB
Format
Adobe PDF
Checksum (MD5)
4bed79436d1b4d1395c025b4cb2db7cb