Options
Structural Evolution of a Crustal-Scale Seismogenic Fault in a Magmatic Arc: The Bolfin Fault Zone (Atacama Fault System)
Author(s)
Language
English
Obiettivo Specifico
3T. Fisica dei terremoti e Sorgente Sismica
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/40 (2021)
ISSN
0278-7407
Publisher
Wiley-AGU
Pages (printed)
e2021TC006818
Issued date
August 2021
Subjects
Keywords
Abstract
How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a >40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5-7 km depth and ≤ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth.
Sponsors
European Research Council Project (NOFEAR) 614705
References
Acocella, V., Bellier, O., Sandri, L., Sébrier, M., & Pramumijoyo, S. (2018). Weak tectono-magmatic relationships along an obliquely convergent
plate boundary: Sumatra, Indonesia. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00003
Allmendinger, R. W., Cardozo, N., & Fisher, D. M. (2011). Structural geology algorithms: Vectors & tensors. Cambridge University Press.
Anderson, E. M. (1951). Dynamics of faulting and dyke formations with application to Britain. Oliver & Boy.
Arabasz, W. J. J. (1971). Geological and geophysical studies of the Atacama fault zone in northern Chile (PhD thesis). California Institute of
Technology.
Arancibia, G., Fujita, K., Hoshino, K., Mitchell, T. M., Cembrano, J., Gomila, R., et al. (2014). Hydrothermal alteration in an exhumed
crustal fault zone: Testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics, 623,
147–168. https://doi.org/10.1016/j.tecto.2014.03.024
Balázs, A., Matenco, L., Vogt, K., Cloetingh, S., & Gerya, T. (2018). Extensional polarity change in continental rifts: Inferences from 3-D numerical
modeling and observations. Journal of Geophysical Research: Solid Earth, 123(9), 8073–8094. https://doi.org/10.1029/2018JB015643
Becker, T. W., Hashima, A., Freed, A. M., & Sato, H. (2018). Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth and
Planetary Science Letters, 504, 174–184. https://doi.org/10.1016/j.epsl.2018.09.035
Bellahsen, N., & Daniel, J. M. (2005). Fault reactivation control on normal fault growth: An experimental study. Journal of Structural Geology,
27(4), 769–780. https://doi.org/10.1016/j.jsg.2004.12.003
Bistacchi, A., Massironi, M., & Menegon, L. (2010). Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and
Sprechenstein fault system (Eastern Alps). Journal of Structural Geology, 32(12), 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003
Bistacchi, A., Massironi, M., Menegon, L., Bolognesi, F., & Donghi, V. (2012). On the nucleation of non-Andersonian faults along phyllosilicate-
rich mylonite belts. Geological Society, London, Special Publications, 367(1), 185–199. https://doi.org/10.1144/SP367.13
Bradbury, K. K., Davis, C. R., Shervais, J. W., Janecke, S. U., & Evans, J. P. (2015). Composition, alteration, and texture of fault-related rocks
from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions. Pure and Applied Geophysics,
172(5), 1053–1078. https://doi.org/10.1007/s00024-014-0896-6
Brown, M., Diàz, F., & Grocott, J. (1993). Displacement history of the Atacama Fault System 25°00’S-27°00’S, northern Chile. The Geological
Society of America Bulletin, 102, 1165–1174. https://doi.org/10.1130/0016-7606(1993)105<1165:dhotaf>2.3.co;2
Butler, R. W. H., Bond, C. E., Shipton, Z. K., Jones, R. R., & Casey, M. (2008). Fabric anisotropy controls faulting in the continental crust.
Journal of the Geological Society, 165(2), 449–452. https://doi.org/10.1144/0016-76492007-129
Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and
dike-diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015TC004076
Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. https://doi.
org/10.1016/j.cageo.2012.07.021
Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., & Herrera, V. (2005). Fault zone development and strain partitioning
in an extensional strike-slip duplex: A case study from the Mesozoic Atacama Fault System, Northern Chile. Tectonophysics, 400(1–4),
105–125. https://doi.org/10.1016/j.tecto.2005.02.012
Chemenda, A. I., Cavalié, O., Vergnolle, M., Bouissou, S., & Delouis, B. (2016). Numerical model of formation of a 3-D strike-slip fault
system. Comptes Rendus Geoscience, 348(1), 61–69. https://doi.org/10.1016/j.crte.2015.09.008
Christiansen, P. P., & Pollard, D. D. (1997). Nucleation, growth and structural development of mylonitic shear zones in granitic rock. Journal
of Structural Geology, 19(9), 1159–1172. https://doi.org/10.1016/S0191-8141(97)00025-4
Clemens, J. D. (1998). Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society, 155,
843–851. https://doi.org/10.1144/gsjgs.155.5.0843
Collanega, L., Siuda, K., Jackson, A.-L. C., Bell, R. E., Coleman, A. J., Lenhart, A., et al. (2019). Normal fault growth influenced by basement
fabrics: The importance of preferential nucleation from pre-existing structures. Basin Research, 31(4), 659–687. https://doi.
org/10.1111/bre.12327
Cowan, D. S. (1999). Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology, 21(8–9), 995–
1001. https://doi.org/10.1016/S0191-8141(99)00046-2
Crider, J. G. (2015). The initiation of brittle faults in crystalline rock. Journal of Structural Geology, 77, 159–174. https://doi.org/10.1016/j.
jsg.2015.05.001
Crider, J. G., & Peacock, D. C. P. (2004). Initiation of brittle faults in the upper crust: A review of field observations. Journal of Structural
Geology, 26(4), 691–707. https://doi.org/10.1016/j.jsg.2003.07.007
d'Alessio, M. A., & Martel, S. J. (2004). Fault terminations and barriers to fault growth. Journal of Structural Geology, 26(10), 1885–1896.
https://doi.org/10.1016/j.jsg.2004.01.010
d'Alessio, M., & Martel, S. J. (2005). Development of strike-slip faults from dikes, Sequoia National Park, California. Journal of Structural
Geology, 27(1), 35–49. https://doi.org/10.1016/j.jsg.2004.06.013
Davatzes, N. C., & Aydin, A. (2003). The formation of conjugate normal fault systems in folded sandstone by sequential jointing and
shearing, Waterpocket monocline, Utah. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2002JB002289
Di Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites
(Adamello batholith, Southern Alps). Tectonophysics, 402(1–4), 55–80. https://doi.org/10.1016/j.tecto.2004.12.036
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Pseudotachylytes and earthquake source mechanics. Fault-zone properties and earthquake
rupture dynamics (pp. 87–133). https://doi.org/10.1016/S0074-6142(08)00005-3
Domagala, J. P., Escribano, J., De La Cruz, R., Saldias, J., & Joquera, R. (2016). Cartas Blanco Encalada y Pampa Remiendos, Region de
Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 187-188 mapa escala 1:100.000.
Santiago.
Dunai, T. J., González López, G. A., & Juez-Larré, J. (2005). Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure
dating of erosion-sensitive landforms. Geology, 33(4), 321. https://doi.org/10.1130/G21184.1
Espinoza, M., Contreras, J. P., Jorquera, R., De La Cruz, R., Kraus, S., Ramirez, C., & Naranjo, J. (2014). Carta Cerro del Pingo, Regiones de
Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 169, 1 mapa escala
1:100.000. Santiago.
Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: A low-temperature
deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529. https://doi.org/10.1016/j.jsg.2003.11.028
Fondriest, M., Balsamo, F., Bistacchi, A., Clemenzi, L., Demurtas, M., Storti, F., & Di Toro, G. (2020). Structural complexity and mechanics
of a shallow crustal seismogenic source (Vado di Corno Fault Zone, Italy). Journal of Geophysical Research: Solid Earth, 125(9). https://
doi.org/10.1029/2019JB018926
Fondriest, M., Smith, S. A. F., Di Toro, G., Zampieri, D., & Mittempergher, S. (2012). Fault zone structure and seismic slip localization in
dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52–67. https://doi.org/10.1016/j.jsg.2012.06.014
Gomila, R., Arancibia, G., Mitchell, T. M., Cembrano, J. M., & Faulkner, D. R. (2016). Palaeopermeability structure within fault-damage
zones: A snap-shot from microfracture analyses in a strike-slip system. Journal of Structural Geology, 83, 103–120. https://doi.
org/10.1016/j.jsg.2015.12.002
Gomila, R., Fondriest, M., Jensen, E., Spagnuolo, E., Masoch, S., Mitchell, T. M., et al. (2021). Frictional Melting in Hydrothermal Fluid-
Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile). Geochemistry, Geophysics, Geosystems, 22(7).
https://doi.org/10.1029/2021gc009743
González, G. (1999). Mecanismo y profundidad de emplazamiento del Pluton de Cerro Cristales, Cordillera de la Costa, Antofagasta, Chile.
Revista Geologica de Chile, 26(1), 43–66. https://doi.org/10.4067/s0716-02081999000100003
González, G., Cembrano, J., Carrizo, D., Macci, A., & Schneider, H. (2003). The link between forearc tectonics and Pliocene-Quaternary
deformation of the Coastal Cordillera, northern Chile. Journal of South American Earth Sciences, 16(5), 321–342. https://doi.
org/10.1016/S0895-9811(03)00100-7
González, G., Dunai, T., Carrizo, D., & Allmendinger, R. (2006). Young displacements on the Atacama Fault System, northern Chile from
field observations and cosmogenic 21Ne concentrations. Tectonics, 25(3), 1–n. https://doi.org/10.1029/2005TC001846
González, G., & Niemeyer, H. (2005). Cartas Antofagasta y Punta Tetas, Region de Antofagasta. Servicio Nacional de Geología y Minería,
Carta Geológica de Chile, Serie Geología Básica 89 mapa escala 1:100.000. Santiago.
Griffith, W. A., Di Toro, G., Pennacchioni, G., & Pollard, D. D. (2008). Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra
Nevada: Physical constraints for small seismic slip events. Journal of Structural Geology, 30(9), 1086–1094. https://doi.org/10.1016/j.
jsg.2008.05.003
Grocott, J., Brown, M., Dallmeyer, R. D., Taylor, G. K., & Treloar, P. J. (1994). Mechanisms of continental growth in extensional arcs:
An example from the Andean plate-boundary zone. Geology, 22, 391–394. https://doi.org/10.1130/0091-7613(1994)022<0391:mocg
ie>2.3.co;2
Grocott, J., & Taylor, G. K. (2002). Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes
in the Coastal Cordillera, north Chilean Andes (25°30’S to 27°00’S). Journal of the Geological Society, 159(4), 425–443. https://doi.
org/10.1144/0016-764901-124
Hardebeck, J. L., & Okada, T. (2018). Temporal stress changes caused by earthquakes: A review. Journal of Geophysical Research: Solid
Earth, 123(2), 1350–1365. https://doi.org/10.1002/2017JB014617
Herrera, V., Cembrano, J., Olivares, V., Kojima, S., & Arancibia, G. (2005). Precipitación por despresurización y ebullición en vetas hospedadas
en un dúplex de rumbo extensional: Evidencias microestructurales y microtermométricas. Revista Geologica de Chile, 32(2),
207–227. https://doi.org/10.4067/s0716-02082005000200003
Hervé, F., Faundez, V., Calderón, M., Massonne, H.-J., & Willner, A. P. (2007). Metamorphic and plutonic basement complexes. In T. Moreno,
& W. Gibbons (Eds.), The geology of Chile (pp. 5–19). https://doi.org/10.1144/GOCH.2
Hodge, M., Fagereng, Å., Biggs, J., & Mdala, H. (2018). Controls on early-rift geometry: New perspectives from the Bilila-Mtakataka Fault,
Malawi. Geophysical Research Letters, 45(9), 3896–3905. https://doi.org/10.1029/2018GL077343
Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., de Bresser, J. H. P., Walker, R. J., & Bowen, L. (2011). Fault rocks from the SAFOD
core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology,
33(2), 132–144. https://doi.org/10.1016/j.jsg.2010.11.010
Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry.
Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/BF00310910
Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. (2009). Fundamentals of rock mechanics (4th ed.). Wiley-Blackwell.
Jaillard, E., Soler, P., Carlier, G., & Mourier, T. (1990). Geodynamic evolution of the northern and central Andes during early to middle
Mesozoic times: A Tethyan model. Journal of the Geological Society, 147(6), 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009
Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., & Arancibia, G. (2011). Development of a self-similar strike-slip duplex system in the
Atacama Fault system, Chile. Journal of Structural Geology, 33(11), 1611–1626. https://doi.org/10.1016/j.jsg.2011.09.002
Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta.
Journal of Structural Geology, 25(5), 793–812. https://doi.org/10.1016/S0191-8141(02)00200-6
Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.
org/10.1016/j.jsg.2003.08.002
Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale-dependent
influence of pre-existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society,
170(2), 237–247. https://doi.org/10.1144/jgs2012-043
Lara, L. E., Naranjo, J. A., & Moreno, H. (2004). Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960
(Mw: 9.5) Chilean earthquake: A structural interpretation. Journal of Volcanology and Geothermal Research, 138(1–2), 127–138. https://
doi.org/10.1016/j.jvolgeores.2004.06.009
Lucassen, F., & Franz, G. (1994). Arc related Jurassic igneous and meta-igneous rocks in the Coastal Cordillera of northern Chile/Region
Antofagasta. Lithos, 32(3–4), 273–298. https://doi.org/10.1016/0024-4937(94)90044-2
Lucassen, F., & Thirlwall, M. F. (1998). Sm–Nd ages of mafic rocks from the Coastal Cordillera at 24°S , northern Chile. Geologische Rundschau,
86, 767–774. https://doi.org/10.1007/s005310050175
Lupi, M., & Miller, S. A. (2014). Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes.
Solid Earth, 5(1), 13–24. https://doi.org/10.5194/se-5-13-2014
Lupi, M., Trippanera, D., Gonzalez, D., D'amico, S., Acocella, V., Cabello, C., et al. (2020). Transient tectonic regimes imposed by megathrust
earthquakes and the growth of NW-trending volcanic systems in the Southern Andes. Tectonophysics, 774, 228204. https://doi.
org/10.1016/j.tecto.2019.228204
Mancktelow, N., & Pennacchioni, G. (2020). Intermittent fracturing in the middle continental crust as evidence for transient switching of
principal stress axes associated with the subduction zone earthquake cycle. Geology, 48, 1072–1076. https://doi.org/10.1130/G47625.1
Mandl, G. (1988). Mechanics of tectonic faulting: Models and basic concepts. In H. J. Zwart (Ed.). Elsevier.
Martel, S. J. (1990). Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology,
12(7), 869–882. https://doi.org/10.1016/0191-8141(90)90060-C
Massironi, M., Bistacchi, A., & Menegon, L. (2011). Misoriented faults in exhumed metamorphic complexes: Rule or exception? Earth and
Planetary Science Letters, 307(1–2), 233–239. https://doi.org/10.1016/j.epsl.2011.04.041
Miller, R. B., & Paterson, S. R. (1999). In defense of magmatic diapirs. Journal of Structural Geology, 21(8–9), 1161–1173. https://doi.
org/10.1016/S0191-8141(99)00033-4
Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range
of displacements: A field study from the Atacama Fault System, northern Chile. Journal of Structural Geology, 31(8), 802–816. https://
doi.org/10.1016/j.jsg.2009.05.002
Mittempergher, S., Zanchi, A., Zanchetta, S., Fumagalli, M., Gukov, K., & Bistacchi, A. (2021). Fault reactivation and propagation in the
northern Adamello pluton: The structure and kinematics of a kilometer-scale seismogenic source. Tectonophysics, 806, 228790. https://
doi.org/10.1016/j.tecto.2021.228790
Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and
igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232,
286–305. https://doi.org/10.1016/j.lithos.2015.06.027
Morton, N., Girty, G. H., & Rockwell, T. K. (2012). Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California:
A model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329(330),
71–83. https://doi.org/10.1016/j.epsl.2012.02.013
Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., & Wrona, T. (2020). Development of 3-D rift heterogeneity through fault network
evolution. Geophysical Research Letters, 47(13), e2019GL086611. https://doi.org/10.1029/2019GL086611
Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (1997). Failure mechanism in schistose rocks. International Journal of Rock Mechanics and
Mining Sciences, 34(3–4), 219.e1–219.e15. https://doi.org/10.1016/S1365-1609(97)00099-3
Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (2003). Anisotropic strength and deformational behavior of Himalayan schists. International
Journal of Rock Mechanics and Mining Sciences, 40(1), 3–23. https://doi.org/10.1016/S1365-1609(02)00103-X
Naylor, M., Mandl, G., & Supesteijn, C. H. (1986). Fault geometries in basement-induced wrench faulting under different initial stress
states. Journal of Structural Geology, 8(7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2
Olivares, V., Herrera, V., Cembrano, J., Arancibia, G., Reyes, N., & Faulkner, D. (2010). Tectonic significance and hydrothermal fluid migration
within a strike-slip duplex fault-vein network: An example from the Atacama Fault System. Andean Geology, 37, 473–497. https://
doi.org/10.5027/andgeov37n2-a12
Pachell, M. A., & Evans, J. P. (2002). Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini
fault zone, Sierra Nevada, California. Journal of Structural Geology, 24(12), 1903–1924. https://doi.org/10.1016/S0191-8141(02)00027-5
Parada, M. A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., et al. (2007). Andean magmatism. In T. Moreno, & W.
Gibbons (Eds.), The geology of Chile (pp. 115–146). https://doi.org/10.1144/GOCH.4
Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time.
Tectonics, 6(3), 233–248. https://doi.org/10.1029/TC006i003p00233
Paterson, S. R., & Vernon, R. H. (1995). Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes.
The Geological Society of America Bulletin, 107(11), 1356–1380. https://doi.org/10.1130/0016-7606(1995)107<1356:btbobp>2.3.co;2
Peacock, D. C. P., & Sanderson, D. J. (1995). Strike-slip relay ramps. Journal of Structural Geology, 17(10), 1351–1360. https://doi.
org/10.1016/0191-8141(95)97303-W
Pearce, R. K., Sánchez de la Muela, A., Moorkamp, M., Hammond, J. O. S., Mitchell, T. M., Cembrano, J., et al. (2020). Reactivation of fault
systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39.
https://doi.org/10.1029/2019TC005997
Pennacchioni, G. (2005). Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites,
Southern Alps (Italy). Journal of Structural Geology, 27(4), 627–644. https://doi.org/10.1016/j.jsg.2004.11.008
Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., & Villa, I. M. (2006). Brittle-ductile-brittle deformation during cooling of tonalite
(Adamello, Southern Italian Alps). Tectonophysics, 427(1–4), 171–197. https://doi.org/10.1016/j.tecto.2006.05.019
Pennacchioni, G., & Mancktelow, N. S. (2013). Initiation and growth of strike-slip faults within intact metagranitoid (Neves area, eastern
Alps, Italy). Bulletin of the Geological Society of America, 125(9–10), 1468–1483. https://doi.org/10.1130/B30832.1
Pennacchioni, G., & Mancktelow, N. S. (2018). Small-scale ductile shear zones: Neither extending, nor thickening, nor narrowing.
Earth-Science Reviews, 184, 1–12. https://doi.org/10.1016/j.earscirev.2018.06.004
Pennacchioni, G., & Zucchi, E. (2013). High temperature fracturing and ductile deformation during cooling of a pluton: The Lake Edison
granodiorite (Sierra Nevada batholith, California). Journal of Structural Geology, 50, 54–81. https://doi.org/10.1016/J.JSG.2012.06.001
Pérez-Flores, P., Cembrano, J., Sánchez-Alfaro, P., Veloso, E., Arancibia, G., & Roquer, T. (2016). Tectonics, magmatism and paleo-fluid
distribution in a strike-slip setting: Insights from the northern termination of the Liquiñe–Ofqui fault System, Chile. Tectonophysics,
680, 192–210. https://doi.org/10.1016/j.tecto.2016.05.016
Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled
by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121(5), 3666–3685.
https://doi.org/10.1002/2015JB012671
Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A.-L., Bell, R. E., et al. (2019). The influence of structural
inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38(12), 4099–4126. https://doi.
org/10.1029/2019TC005756
Rizza, M., Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Karakaş, Ç., et al. (2019). Post earthquake aggradation processes to hide
surface ruptures in thrust systems: The M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal). Journal of
Geophysical Research: Solid Earth, 124(8), 9182–9207. https://doi.org/10.1029/2018JB016376
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26.
https://doi.org/10.1016/j.jsg.2015.06.006
Ruthven, R., Singleton, J., Seymour, N., Gomila, R., Arancibia, G., Stockli, D. F., et al. (2020). The geometry, kinematics, and timing of
deformation along the southern segment of the Paposo fault zone, Atacama Fault System, northern Chile. Journal of South American
Earth Sciences, 97, 102355. https://doi.org/10.1016/j.jsames.2019.102355
Sawyer, E. W. (2000). Grain-scale and outcrop-scale distribution and movement of melt in a crystallizing granite. Earth and Environmental
Science Transactions of the Royal Society of Edinburgh, 91(1–2), 73–85. https://doi.org/10.1017/S0263593300007306
Scheuber, E., & Andriessen, P. A. M. (1990). The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. Journal
of Structural Geology, 12(2), 243–257. https://doi.org/10.1016/0191-8141(90)90008-M
Scheuber, E., & González, G. (1999). Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-
26°S): A story of crustal deformation along a convergent plate boundary. Tectonics, 18(5), 895–910. https://doi.org/10.1029/1999TC900024
Scheuber, E., Hammerschmidt, K., & Friedrichsen, H. (1995). 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama
Fault Zone, northern Chile: The age of deformation. Tectonophysics, 250(1–3), 61–87. https://doi.org/10.1016/0040-1951(95)00044-8
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. https://doi.org/10.1017/9781316681473
Segall, P., & Pollard, D. P. (1983). Nucleation and growth of strike slip faults in granite. Journal of Geophysical Research, 88(B1), 555–568.
https://doi.org/10.1029/JB088iB01p00555
Segall, P., & Simpson, C. (1986). Nucleation of ductile shear zones on dilatant fractures. Geology, 14(1), 56. https://doi.org/10.1130/0091-7
613(1986)14<56:NODSZO>2.0.CO;2
SERNAGEOMIN. (2003). Mapa Geológico de Chile: versión digital. Base geológica escala 1:1.000.000. Santiago: Servicio Nacional de Geología
y Minería, Publicación Geológica Digital No. 4 (CD-ROM, versión1.0, 2003).
Seymour, N. M., Singleton, J. S., Gomila, R., Mavor, S. P., Heuser, G., Arancibia, G., et al. (2021). Magnitude, timing, and rate of slip along
the Atacama Fault System, northern Chile: Implications for Early Cretaceous slip partitioning and plate convergence. Journal of the
Geological Society, 178, jgs2020-142. https://doi.org/10.1144/jgs2020-142
Seymour, N. M., Singleton, J. S., Mavor, S. P., Gomila, R., Stockli, D. F., Heuser, G., & Arancibia, G. (2020). The relationship between magmatism
and deformation along the intra-arc strike-slip Atacama fault system, Northern Chile. Tectonics, 39(3), e2019TC005702. https://
doi.org/10.1029/2019TC005702
Shigematsu, N., Kametaka, M., Inada, N., Miyawaki, M., Miyakawa, A., Kameda, J., Fujimoto, K., et al. (2017). Evolution of the Median
Tectonic Line fault zone, SW Japan, during exhumation. Tectonophysics, 696–697, 52–69. https://doi.org/10.1016/j.tecto.2016.12.017
Sibson, R. H. (1975). Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal of the Royal Astronomical Society,
43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
Sibson, R. H. (1990). Faulting and fluid flow. In B. E. Nesbitt (Ed.), Fluids in tectonically active regimes of the continental crust. Mineralogical
Association of Canada, Short Course on Crustal Fluids, Handbook 18 (pp. 93–132).
Sielfeld, G., Lange, D., & Cembrano, J. (2019). Intra-arc crustal seismicity: Seismotectonic implications for the Southern Andes Volcanic
Zone, Chile. Tectonics, 38(2), 552–578. https://doi.org/10.1029/2018TC004985
Smith, S. A. F., Bistacchi, A., Mitchell, T. M., Mittempergher, S., & Di Toro, G. (2013). The structure of an exhumed intraplate seismogenic
fault in crystalline basement. Tectonophysics, 599, 29–44. https://doi.org/10.1016/j.tecto.2013.03.031
Snoke, A. W., Tullis, J., & Todd, V. R. (1998). Fault-related rocks: A photographic atlas. https://doi.org/10.2307/j.ctt7zvg0k
Stewart, M., Holdsworth, R. E., & Strachan, R. A. (2000). Deformation processes and weakening mechanisms within the frictional–viscous
transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland. Journal of Structural Geology, 22(5),
543–560. https://doi.org/10.1016/S0191-8141(99)00164-9
Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation
of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology, 24(12), 1861–1884. https://doi.org/10.1016/
S0191-8141(02)00035-4
Storti, F., Holdsworth, R. E., & Salvini, F. (2003). In F. Storti, R. E. Holdsworth, & F. Salvini (Eds.), Intraplate strike-slip deformation belts
(Vol. 210, pp. 1–14). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.210.01.01
Swanson, M. T. (1988). Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. Journal of Structural
Geology, 10(8), 813–828. https://doi.org/10.1016/0191-8141(88)90097-1
Swanson, M. T. (1992). Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics, 204(3–4),
223–242. https://doi.org/10.1016/0040-1951(92)90309-T
Swanson, M. T. (1999a). Dextral transpression at the Casco Bay restraining bend, Norumbega fault zone, coastal Maine. Norumbega Fault
System of the Northern Appalachians. https://doi.org/10.1130/0-8137-2331-0.85
Swanson, M. T. (1999b). Kinematic indicators for regional dextral shear along the Norumbega fault system in the Casco Bay area, coastal
Maine. Norumbega fault system of the Northern Appalachians (pp. 1–24). https://doi.org/10.1130/0-8137-2331-0.1
Swanson, M. T. (2006a). Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine. Journal of Structural Geology,
28(3), 456–473. https://doi.org/10.1016/j.jsg.2005.12.009
Swanson, M. T. (2006b). Pseudotachylyte-bearing strike-slip faults in mylonitic host rocks, Fort Foster Brittle Zone, Kittery, Maine. In R.
Abercrombie, A. McGarr, G. Di Toro, & H. Kanamori (Eds.), Earthquakes: Radiated energy and the physics of faulting (pp. 167–179).
https://doi.org/10.1029/170GM17
Sylvester, A. G. (1988). Strike-slip faults. The Geological Society of America Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016-760
6(1988)100<1666:SSF>2.3.CO;2
Veloso, E. E., Gomila, R., Cembrano, J., González, R., Jensen, E., & Arancibia, G. (2015). Stress fields recorded on large-scale strike-slip
fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction. Tectonophysics, 664, 244–255. https://doi.
org/10.1016/j.tecto.2015.09.022
Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., et al. (2020). Structural inheritance and border fault
reactivation during active early-stage rifting along the Thyolo fault, Malawi. Journal of Structural Geology, 139, 104097. https://doi.
org/10.1016/j.jsg.2020.104097
Weinberg, R. F. (2006). Melt segregation structures in granitic plutons. Geology, 34(4), 305. https://doi.org/10.1130/G22406.1
Whipp, P. S., Jackson, C. A.-L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift
fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523–549. https://doi.
org/10.1111/bre.12050
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://
doi.org/10.2138/am.2010.3371
Williams, J. N., Toy, V. G., Smith, S. A. F., & Boulton, C. (2017). Fracturing, fluid-rock interaction and mineralization during the seismic
cycle along the Alpine Fault. Journal of Structural Geology, 103, 151–166. https://doi.org/10.1016/j.jsg.2017.09.011
Woodcock, N. H. (1986). The role of strike-slip fault systems at plate boundaries. Philosophical Transactions of the Royal Society of London
- Series A: Mathematical and Physical Sciences, 317(1539), 13–29. https://doi.org/10.1098/rsta.1986.0021
plate boundary: Sumatra, Indonesia. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00003
Allmendinger, R. W., Cardozo, N., & Fisher, D. M. (2011). Structural geology algorithms: Vectors & tensors. Cambridge University Press.
Anderson, E. M. (1951). Dynamics of faulting and dyke formations with application to Britain. Oliver & Boy.
Arabasz, W. J. J. (1971). Geological and geophysical studies of the Atacama fault zone in northern Chile (PhD thesis). California Institute of
Technology.
Arancibia, G., Fujita, K., Hoshino, K., Mitchell, T. M., Cembrano, J., Gomila, R., et al. (2014). Hydrothermal alteration in an exhumed
crustal fault zone: Testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile. Tectonophysics, 623,
147–168. https://doi.org/10.1016/j.tecto.2014.03.024
Balázs, A., Matenco, L., Vogt, K., Cloetingh, S., & Gerya, T. (2018). Extensional polarity change in continental rifts: Inferences from 3-D numerical
modeling and observations. Journal of Geophysical Research: Solid Earth, 123(9), 8073–8094. https://doi.org/10.1029/2018JB015643
Becker, T. W., Hashima, A., Freed, A. M., & Sato, H. (2018). Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth and
Planetary Science Letters, 504, 174–184. https://doi.org/10.1016/j.epsl.2018.09.035
Bellahsen, N., & Daniel, J. M. (2005). Fault reactivation control on normal fault growth: An experimental study. Journal of Structural Geology,
27(4), 769–780. https://doi.org/10.1016/j.jsg.2004.12.003
Bistacchi, A., Massironi, M., & Menegon, L. (2010). Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and
Sprechenstein fault system (Eastern Alps). Journal of Structural Geology, 32(12), 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003
Bistacchi, A., Massironi, M., Menegon, L., Bolognesi, F., & Donghi, V. (2012). On the nucleation of non-Andersonian faults along phyllosilicate-
rich mylonite belts. Geological Society, London, Special Publications, 367(1), 185–199. https://doi.org/10.1144/SP367.13
Bradbury, K. K., Davis, C. R., Shervais, J. W., Janecke, S. U., & Evans, J. P. (2015). Composition, alteration, and texture of fault-related rocks
from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions. Pure and Applied Geophysics,
172(5), 1053–1078. https://doi.org/10.1007/s00024-014-0896-6
Brown, M., Diàz, F., & Grocott, J. (1993). Displacement history of the Atacama Fault System 25°00’S-27°00’S, northern Chile. The Geological
Society of America Bulletin, 102, 1165–1174. https://doi.org/10.1130/0016-7606(1993)105<1165:dhotaf>2.3.co;2
Butler, R. W. H., Bond, C. E., Shipton, Z. K., Jones, R. R., & Casey, M. (2008). Fabric anisotropy controls faulting in the continental crust.
Journal of the Geological Society, 165(2), 449–452. https://doi.org/10.1144/0016-76492007-129
Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and
dike-diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015TC004076
Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. https://doi.
org/10.1016/j.cageo.2012.07.021
Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., & Herrera, V. (2005). Fault zone development and strain partitioning
in an extensional strike-slip duplex: A case study from the Mesozoic Atacama Fault System, Northern Chile. Tectonophysics, 400(1–4),
105–125. https://doi.org/10.1016/j.tecto.2005.02.012
Chemenda, A. I., Cavalié, O., Vergnolle, M., Bouissou, S., & Delouis, B. (2016). Numerical model of formation of a 3-D strike-slip fault
system. Comptes Rendus Geoscience, 348(1), 61–69. https://doi.org/10.1016/j.crte.2015.09.008
Christiansen, P. P., & Pollard, D. D. (1997). Nucleation, growth and structural development of mylonitic shear zones in granitic rock. Journal
of Structural Geology, 19(9), 1159–1172. https://doi.org/10.1016/S0191-8141(97)00025-4
Clemens, J. D. (1998). Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society, 155,
843–851. https://doi.org/10.1144/gsjgs.155.5.0843
Collanega, L., Siuda, K., Jackson, A.-L. C., Bell, R. E., Coleman, A. J., Lenhart, A., et al. (2019). Normal fault growth influenced by basement
fabrics: The importance of preferential nucleation from pre-existing structures. Basin Research, 31(4), 659–687. https://doi.
org/10.1111/bre.12327
Cowan, D. S. (1999). Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology, 21(8–9), 995–
1001. https://doi.org/10.1016/S0191-8141(99)00046-2
Crider, J. G. (2015). The initiation of brittle faults in crystalline rock. Journal of Structural Geology, 77, 159–174. https://doi.org/10.1016/j.
jsg.2015.05.001
Crider, J. G., & Peacock, D. C. P. (2004). Initiation of brittle faults in the upper crust: A review of field observations. Journal of Structural
Geology, 26(4), 691–707. https://doi.org/10.1016/j.jsg.2003.07.007
d'Alessio, M. A., & Martel, S. J. (2004). Fault terminations and barriers to fault growth. Journal of Structural Geology, 26(10), 1885–1896.
https://doi.org/10.1016/j.jsg.2004.01.010
d'Alessio, M., & Martel, S. J. (2005). Development of strike-slip faults from dikes, Sequoia National Park, California. Journal of Structural
Geology, 27(1), 35–49. https://doi.org/10.1016/j.jsg.2004.06.013
Davatzes, N. C., & Aydin, A. (2003). The formation of conjugate normal fault systems in folded sandstone by sequential jointing and
shearing, Waterpocket monocline, Utah. Journal of Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2002JB002289
Di Toro, G., & Pennacchioni, G. (2005). Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites
(Adamello batholith, Southern Alps). Tectonophysics, 402(1–4), 55–80. https://doi.org/10.1016/j.tecto.2004.12.036
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Pseudotachylytes and earthquake source mechanics. Fault-zone properties and earthquake
rupture dynamics (pp. 87–133). https://doi.org/10.1016/S0074-6142(08)00005-3
Domagala, J. P., Escribano, J., De La Cruz, R., Saldias, J., & Joquera, R. (2016). Cartas Blanco Encalada y Pampa Remiendos, Region de
Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 187-188 mapa escala 1:100.000.
Santiago.
Dunai, T. J., González López, G. A., & Juez-Larré, J. (2005). Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure
dating of erosion-sensitive landforms. Geology, 33(4), 321. https://doi.org/10.1130/G21184.1
Espinoza, M., Contreras, J. P., Jorquera, R., De La Cruz, R., Kraus, S., Ramirez, C., & Naranjo, J. (2014). Carta Cerro del Pingo, Regiones de
Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 169, 1 mapa escala
1:100.000. Santiago.
Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: A low-temperature
deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529. https://doi.org/10.1016/j.jsg.2003.11.028
Fondriest, M., Balsamo, F., Bistacchi, A., Clemenzi, L., Demurtas, M., Storti, F., & Di Toro, G. (2020). Structural complexity and mechanics
of a shallow crustal seismogenic source (Vado di Corno Fault Zone, Italy). Journal of Geophysical Research: Solid Earth, 125(9). https://
doi.org/10.1029/2019JB018926
Fondriest, M., Smith, S. A. F., Di Toro, G., Zampieri, D., & Mittempergher, S. (2012). Fault zone structure and seismic slip localization in
dolostones, an example from the Southern Alps, Italy. Journal of Structural Geology, 45, 52–67. https://doi.org/10.1016/j.jsg.2012.06.014
Gomila, R., Arancibia, G., Mitchell, T. M., Cembrano, J. M., & Faulkner, D. R. (2016). Palaeopermeability structure within fault-damage
zones: A snap-shot from microfracture analyses in a strike-slip system. Journal of Structural Geology, 83, 103–120. https://doi.
org/10.1016/j.jsg.2015.12.002
Gomila, R., Fondriest, M., Jensen, E., Spagnuolo, E., Masoch, S., Mitchell, T. M., et al. (2021). Frictional Melting in Hydrothermal Fluid-
Rich Faults: Field and Experimental Evidence From the Bolfín Fault Zone (Chile). Geochemistry, Geophysics, Geosystems, 22(7).
https://doi.org/10.1029/2021gc009743
González, G. (1999). Mecanismo y profundidad de emplazamiento del Pluton de Cerro Cristales, Cordillera de la Costa, Antofagasta, Chile.
Revista Geologica de Chile, 26(1), 43–66. https://doi.org/10.4067/s0716-02081999000100003
González, G., Cembrano, J., Carrizo, D., Macci, A., & Schneider, H. (2003). The link between forearc tectonics and Pliocene-Quaternary
deformation of the Coastal Cordillera, northern Chile. Journal of South American Earth Sciences, 16(5), 321–342. https://doi.
org/10.1016/S0895-9811(03)00100-7
González, G., Dunai, T., Carrizo, D., & Allmendinger, R. (2006). Young displacements on the Atacama Fault System, northern Chile from
field observations and cosmogenic 21Ne concentrations. Tectonics, 25(3), 1–n. https://doi.org/10.1029/2005TC001846
González, G., & Niemeyer, H. (2005). Cartas Antofagasta y Punta Tetas, Region de Antofagasta. Servicio Nacional de Geología y Minería,
Carta Geológica de Chile, Serie Geología Básica 89 mapa escala 1:100.000. Santiago.
Griffith, W. A., Di Toro, G., Pennacchioni, G., & Pollard, D. D. (2008). Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra
Nevada: Physical constraints for small seismic slip events. Journal of Structural Geology, 30(9), 1086–1094. https://doi.org/10.1016/j.
jsg.2008.05.003
Grocott, J., Brown, M., Dallmeyer, R. D., Taylor, G. K., & Treloar, P. J. (1994). Mechanisms of continental growth in extensional arcs:
An example from the Andean plate-boundary zone. Geology, 22, 391–394. https://doi.org/10.1130/0091-7613(1994)022<0391:mocg
ie>2.3.co;2
Grocott, J., & Taylor, G. K. (2002). Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes
in the Coastal Cordillera, north Chilean Andes (25°30’S to 27°00’S). Journal of the Geological Society, 159(4), 425–443. https://doi.
org/10.1144/0016-764901-124
Hardebeck, J. L., & Okada, T. (2018). Temporal stress changes caused by earthquakes: A review. Journal of Geophysical Research: Solid
Earth, 123(2), 1350–1365. https://doi.org/10.1002/2017JB014617
Herrera, V., Cembrano, J., Olivares, V., Kojima, S., & Arancibia, G. (2005). Precipitación por despresurización y ebullición en vetas hospedadas
en un dúplex de rumbo extensional: Evidencias microestructurales y microtermométricas. Revista Geologica de Chile, 32(2),
207–227. https://doi.org/10.4067/s0716-02082005000200003
Hervé, F., Faundez, V., Calderón, M., Massonne, H.-J., & Willner, A. P. (2007). Metamorphic and plutonic basement complexes. In T. Moreno,
& W. Gibbons (Eds.), The geology of Chile (pp. 5–19). https://doi.org/10.1144/GOCH.2
Hodge, M., Fagereng, Å., Biggs, J., & Mdala, H. (2018). Controls on early-rift geometry: New perspectives from the Bilila-Mtakataka Fault,
Malawi. Geophysical Research Letters, 45(9), 3896–3905. https://doi.org/10.1029/2018GL077343
Holdsworth, R. E., van Diggelen, E. W. E., Spiers, C. J., de Bresser, J. H. P., Walker, R. J., & Bowen, L. (2011). Fault rocks from the SAFOD
core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology,
33(2), 132–144. https://doi.org/10.1016/j.jsg.2010.11.010
Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry.
Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/BF00310910
Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. (2009). Fundamentals of rock mechanics (4th ed.). Wiley-Blackwell.
Jaillard, E., Soler, P., Carlier, G., & Mourier, T. (1990). Geodynamic evolution of the northern and central Andes during early to middle
Mesozoic times: A Tethyan model. Journal of the Geological Society, 147(6), 1009–1022. https://doi.org/10.1144/gsjgs.147.6.1009
Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., & Arancibia, G. (2011). Development of a self-similar strike-slip duplex system in the
Atacama Fault system, Chile. Journal of Structural Geology, 33(11), 1611–1626. https://doi.org/10.1016/j.jsg.2011.09.002
Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta.
Journal of Structural Geology, 25(5), 793–812. https://doi.org/10.1016/S0191-8141(02)00200-6
Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2004). Fault damage zones. Journal of Structural Geology, 26(3), 503–517. https://doi.
org/10.1016/j.jsg.2003.08.002
Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F., Pytharouli, S. I., Lunn, R. J., & Soden, A. M. (2013). Scale-dependent
influence of pre-existing basement shear zones on rift faulting: A case study from NE Brazil. Journal of the Geological Society,
170(2), 237–247. https://doi.org/10.1144/jgs2012-043
Lara, L. E., Naranjo, J. A., & Moreno, H. (2004). Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960
(Mw: 9.5) Chilean earthquake: A structural interpretation. Journal of Volcanology and Geothermal Research, 138(1–2), 127–138. https://
doi.org/10.1016/j.jvolgeores.2004.06.009
Lucassen, F., & Franz, G. (1994). Arc related Jurassic igneous and meta-igneous rocks in the Coastal Cordillera of northern Chile/Region
Antofagasta. Lithos, 32(3–4), 273–298. https://doi.org/10.1016/0024-4937(94)90044-2
Lucassen, F., & Thirlwall, M. F. (1998). Sm–Nd ages of mafic rocks from the Coastal Cordillera at 24°S , northern Chile. Geologische Rundschau,
86, 767–774. https://doi.org/10.1007/s005310050175
Lupi, M., & Miller, S. A. (2014). Short-lived tectonic switch mechanism for long-term pulses of volcanic activity after mega-thrust earthquakes.
Solid Earth, 5(1), 13–24. https://doi.org/10.5194/se-5-13-2014
Lupi, M., Trippanera, D., Gonzalez, D., D'amico, S., Acocella, V., Cabello, C., et al. (2020). Transient tectonic regimes imposed by megathrust
earthquakes and the growth of NW-trending volcanic systems in the Southern Andes. Tectonophysics, 774, 228204. https://doi.
org/10.1016/j.tecto.2019.228204
Mancktelow, N., & Pennacchioni, G. (2020). Intermittent fracturing in the middle continental crust as evidence for transient switching of
principal stress axes associated with the subduction zone earthquake cycle. Geology, 48, 1072–1076. https://doi.org/10.1130/G47625.1
Mandl, G. (1988). Mechanics of tectonic faulting: Models and basic concepts. In H. J. Zwart (Ed.). Elsevier.
Martel, S. J. (1990). Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California. Journal of Structural Geology,
12(7), 869–882. https://doi.org/10.1016/0191-8141(90)90060-C
Massironi, M., Bistacchi, A., & Menegon, L. (2011). Misoriented faults in exhumed metamorphic complexes: Rule or exception? Earth and
Planetary Science Letters, 307(1–2), 233–239. https://doi.org/10.1016/j.epsl.2011.04.041
Miller, R. B., & Paterson, S. R. (1999). In defense of magmatic diapirs. Journal of Structural Geology, 21(8–9), 1161–1173. https://doi.
org/10.1016/S0191-8141(99)00033-4
Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range
of displacements: A field study from the Atacama Fault System, northern Chile. Journal of Structural Geology, 31(8), 802–816. https://
doi.org/10.1016/j.jsg.2009.05.002
Mittempergher, S., Zanchi, A., Zanchetta, S., Fumagalli, M., Gukov, K., & Bistacchi, A. (2021). Fault reactivation and propagation in the
northern Adamello pluton: The structure and kinematics of a kilometer-scale seismogenic source. Tectonophysics, 806, 228790. https://
doi.org/10.1016/j.tecto.2021.228790
Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and
igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232,
286–305. https://doi.org/10.1016/j.lithos.2015.06.027
Morton, N., Girty, G. H., & Rockwell, T. K. (2012). Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California:
A model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth and Planetary Science Letters, 329(330),
71–83. https://doi.org/10.1016/j.epsl.2012.02.013
Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., & Wrona, T. (2020). Development of 3-D rift heterogeneity through fault network
evolution. Geophysical Research Letters, 47(13), e2019GL086611. https://doi.org/10.1029/2019GL086611
Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (1997). Failure mechanism in schistose rocks. International Journal of Rock Mechanics and
Mining Sciences, 34(3–4), 219.e1–219.e15. https://doi.org/10.1016/S1365-1609(97)00099-3
Nasseri, M. H., Rao, K. S., & Ramamurthy, T. (2003). Anisotropic strength and deformational behavior of Himalayan schists. International
Journal of Rock Mechanics and Mining Sciences, 40(1), 3–23. https://doi.org/10.1016/S1365-1609(02)00103-X
Naylor, M., Mandl, G., & Supesteijn, C. H. (1986). Fault geometries in basement-induced wrench faulting under different initial stress
states. Journal of Structural Geology, 8(7), 737–752. https://doi.org/10.1016/0191-8141(86)90022-2
Olivares, V., Herrera, V., Cembrano, J., Arancibia, G., Reyes, N., & Faulkner, D. (2010). Tectonic significance and hydrothermal fluid migration
within a strike-slip duplex fault-vein network: An example from the Atacama Fault System. Andean Geology, 37, 473–497. https://
doi.org/10.5027/andgeov37n2-a12
Pachell, M. A., & Evans, J. P. (2002). Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini
fault zone, Sierra Nevada, California. Journal of Structural Geology, 24(12), 1903–1924. https://doi.org/10.1016/S0191-8141(02)00027-5
Parada, M. A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., et al. (2007). Andean magmatism. In T. Moreno, & W.
Gibbons (Eds.), The geology of Chile (pp. 115–146). https://doi.org/10.1144/GOCH.4
Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time.
Tectonics, 6(3), 233–248. https://doi.org/10.1029/TC006i003p00233
Paterson, S. R., & Vernon, R. H. (1995). Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes.
The Geological Society of America Bulletin, 107(11), 1356–1380. https://doi.org/10.1130/0016-7606(1995)107<1356:btbobp>2.3.co;2
Peacock, D. C. P., & Sanderson, D. J. (1995). Strike-slip relay ramps. Journal of Structural Geology, 17(10), 1351–1360. https://doi.
org/10.1016/0191-8141(95)97303-W
Pearce, R. K., Sánchez de la Muela, A., Moorkamp, M., Hammond, J. O. S., Mitchell, T. M., Cembrano, J., et al. (2020). Reactivation of fault
systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39.
https://doi.org/10.1029/2019TC005997
Pennacchioni, G. (2005). Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites,
Southern Alps (Italy). Journal of Structural Geology, 27(4), 627–644. https://doi.org/10.1016/j.jsg.2004.11.008
Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., & Villa, I. M. (2006). Brittle-ductile-brittle deformation during cooling of tonalite
(Adamello, Southern Italian Alps). Tectonophysics, 427(1–4), 171–197. https://doi.org/10.1016/j.tecto.2006.05.019
Pennacchioni, G., & Mancktelow, N. S. (2013). Initiation and growth of strike-slip faults within intact metagranitoid (Neves area, eastern
Alps, Italy). Bulletin of the Geological Society of America, 125(9–10), 1468–1483. https://doi.org/10.1130/B30832.1
Pennacchioni, G., & Mancktelow, N. S. (2018). Small-scale ductile shear zones: Neither extending, nor thickening, nor narrowing.
Earth-Science Reviews, 184, 1–12. https://doi.org/10.1016/j.earscirev.2018.06.004
Pennacchioni, G., & Zucchi, E. (2013). High temperature fracturing and ductile deformation during cooling of a pluton: The Lake Edison
granodiorite (Sierra Nevada batholith, California). Journal of Structural Geology, 50, 54–81. https://doi.org/10.1016/J.JSG.2012.06.001
Pérez-Flores, P., Cembrano, J., Sánchez-Alfaro, P., Veloso, E., Arancibia, G., & Roquer, T. (2016). Tectonics, magmatism and paleo-fluid
distribution in a strike-slip setting: Insights from the northern termination of the Liquiñe–Ofqui fault System, Chile. Tectonophysics,
680, 192–210. https://doi.org/10.1016/j.tecto.2016.05.016
Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled
by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121(5), 3666–3685.
https://doi.org/10.1002/2015JB012671
Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A.-L., Bell, R. E., et al. (2019). The influence of structural
inheritance and multiphase extension on rift development, the Northern North Sea. Tectonics, 38(12), 4099–4126. https://doi.
org/10.1029/2019TC005756
Rizza, M., Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Karakaş, Ç., et al. (2019). Post earthquake aggradation processes to hide
surface ruptures in thrust systems: The M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal). Journal of
Geophysical Research: Solid Earth, 124(8), 9182–9207. https://doi.org/10.1029/2018JB016376
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26.
https://doi.org/10.1016/j.jsg.2015.06.006
Ruthven, R., Singleton, J., Seymour, N., Gomila, R., Arancibia, G., Stockli, D. F., et al. (2020). The geometry, kinematics, and timing of
deformation along the southern segment of the Paposo fault zone, Atacama Fault System, northern Chile. Journal of South American
Earth Sciences, 97, 102355. https://doi.org/10.1016/j.jsames.2019.102355
Sawyer, E. W. (2000). Grain-scale and outcrop-scale distribution and movement of melt in a crystallizing granite. Earth and Environmental
Science Transactions of the Royal Society of Edinburgh, 91(1–2), 73–85. https://doi.org/10.1017/S0263593300007306
Scheuber, E., & Andriessen, P. A. M. (1990). The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. Journal
of Structural Geology, 12(2), 243–257. https://doi.org/10.1016/0191-8141(90)90008-M
Scheuber, E., & González, G. (1999). Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-
26°S): A story of crustal deformation along a convergent plate boundary. Tectonics, 18(5), 895–910. https://doi.org/10.1029/1999TC900024
Scheuber, E., Hammerschmidt, K., & Friedrichsen, H. (1995). 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama
Fault Zone, northern Chile: The age of deformation. Tectonophysics, 250(1–3), 61–87. https://doi.org/10.1016/0040-1951(95)00044-8
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. https://doi.org/10.1017/9781316681473
Segall, P., & Pollard, D. P. (1983). Nucleation and growth of strike slip faults in granite. Journal of Geophysical Research, 88(B1), 555–568.
https://doi.org/10.1029/JB088iB01p00555
Segall, P., & Simpson, C. (1986). Nucleation of ductile shear zones on dilatant fractures. Geology, 14(1), 56. https://doi.org/10.1130/0091-7
613(1986)14<56:NODSZO>2.0.CO;2
SERNAGEOMIN. (2003). Mapa Geológico de Chile: versión digital. Base geológica escala 1:1.000.000. Santiago: Servicio Nacional de Geología
y Minería, Publicación Geológica Digital No. 4 (CD-ROM, versión1.0, 2003).
Seymour, N. M., Singleton, J. S., Gomila, R., Mavor, S. P., Heuser, G., Arancibia, G., et al. (2021). Magnitude, timing, and rate of slip along
the Atacama Fault System, northern Chile: Implications for Early Cretaceous slip partitioning and plate convergence. Journal of the
Geological Society, 178, jgs2020-142. https://doi.org/10.1144/jgs2020-142
Seymour, N. M., Singleton, J. S., Mavor, S. P., Gomila, R., Stockli, D. F., Heuser, G., & Arancibia, G. (2020). The relationship between magmatism
and deformation along the intra-arc strike-slip Atacama fault system, Northern Chile. Tectonics, 39(3), e2019TC005702. https://
doi.org/10.1029/2019TC005702
Shigematsu, N., Kametaka, M., Inada, N., Miyawaki, M., Miyakawa, A., Kameda, J., Fujimoto, K., et al. (2017). Evolution of the Median
Tectonic Line fault zone, SW Japan, during exhumation. Tectonophysics, 696–697, 52–69. https://doi.org/10.1016/j.tecto.2016.12.017
Sibson, R. H. (1975). Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal of the Royal Astronomical Society,
43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
Sibson, R. H. (1990). Faulting and fluid flow. In B. E. Nesbitt (Ed.), Fluids in tectonically active regimes of the continental crust. Mineralogical
Association of Canada, Short Course on Crustal Fluids, Handbook 18 (pp. 93–132).
Sielfeld, G., Lange, D., & Cembrano, J. (2019). Intra-arc crustal seismicity: Seismotectonic implications for the Southern Andes Volcanic
Zone, Chile. Tectonics, 38(2), 552–578. https://doi.org/10.1029/2018TC004985
Smith, S. A. F., Bistacchi, A., Mitchell, T. M., Mittempergher, S., & Di Toro, G. (2013). The structure of an exhumed intraplate seismogenic
fault in crystalline basement. Tectonophysics, 599, 29–44. https://doi.org/10.1016/j.tecto.2013.03.031
Snoke, A. W., Tullis, J., & Todd, V. R. (1998). Fault-related rocks: A photographic atlas. https://doi.org/10.2307/j.ctt7zvg0k
Stewart, M., Holdsworth, R. E., & Strachan, R. A. (2000). Deformation processes and weakening mechanisms within the frictional–viscous
transition zone of major crustal-scale faults: Insights from the Great Glen Fault Zone, Scotland. Journal of Structural Geology, 22(5),
543–560. https://doi.org/10.1016/S0191-8141(99)00164-9
Stipp, M., Stünitz, H., Heilbronner, R., & Schmid, S. M. (2002). The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation
of quartz over a temperature range from 250 to 700°C. Journal of Structural Geology, 24(12), 1861–1884. https://doi.org/10.1016/
S0191-8141(02)00035-4
Storti, F., Holdsworth, R. E., & Salvini, F. (2003). In F. Storti, R. E. Holdsworth, & F. Salvini (Eds.), Intraplate strike-slip deformation belts
(Vol. 210, pp. 1–14). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.210.01.01
Swanson, M. T. (1988). Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. Journal of Structural
Geology, 10(8), 813–828. https://doi.org/10.1016/0191-8141(88)90097-1
Swanson, M. T. (1992). Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics, 204(3–4),
223–242. https://doi.org/10.1016/0040-1951(92)90309-T
Swanson, M. T. (1999a). Dextral transpression at the Casco Bay restraining bend, Norumbega fault zone, coastal Maine. Norumbega Fault
System of the Northern Appalachians. https://doi.org/10.1130/0-8137-2331-0.85
Swanson, M. T. (1999b). Kinematic indicators for regional dextral shear along the Norumbega fault system in the Casco Bay area, coastal
Maine. Norumbega fault system of the Northern Appalachians (pp. 1–24). https://doi.org/10.1130/0-8137-2331-0.1
Swanson, M. T. (2006a). Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine. Journal of Structural Geology,
28(3), 456–473. https://doi.org/10.1016/j.jsg.2005.12.009
Swanson, M. T. (2006b). Pseudotachylyte-bearing strike-slip faults in mylonitic host rocks, Fort Foster Brittle Zone, Kittery, Maine. In R.
Abercrombie, A. McGarr, G. Di Toro, & H. Kanamori (Eds.), Earthquakes: Radiated energy and the physics of faulting (pp. 167–179).
https://doi.org/10.1029/170GM17
Sylvester, A. G. (1988). Strike-slip faults. The Geological Society of America Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016-760
6(1988)100<1666:SSF>2.3.CO;2
Veloso, E. E., Gomila, R., Cembrano, J., González, R., Jensen, E., & Arancibia, G. (2015). Stress fields recorded on large-scale strike-slip
fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction. Tectonophysics, 664, 244–255. https://doi.
org/10.1016/j.tecto.2015.09.022
Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., et al. (2020). Structural inheritance and border fault
reactivation during active early-stage rifting along the Thyolo fault, Malawi. Journal of Structural Geology, 139, 104097. https://doi.
org/10.1016/j.jsg.2020.104097
Weinberg, R. F. (2006). Melt segregation structures in granitic plutons. Geology, 34(4), 305. https://doi.org/10.1130/G22406.1
Whipp, P. S., Jackson, C. A.-L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift
fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26(4), 523–549. https://doi.
org/10.1111/bre.12050
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185–187. https://
doi.org/10.2138/am.2010.3371
Williams, J. N., Toy, V. G., Smith, S. A. F., & Boulton, C. (2017). Fracturing, fluid-rock interaction and mineralization during the seismic
cycle along the Alpine Fault. Journal of Structural Geology, 103, 151–166. https://doi.org/10.1016/j.jsg.2017.09.011
Woodcock, N. H. (1986). The role of strike-slip fault systems at plate boundaries. Philosophical Transactions of the Royal Society of London
- Series A: Mathematical and Physical Sciences, 317(1539), 13–29. https://doi.org/10.1098/rsta.1986.0021
Type
article
File(s)
Loading...
Name
Masoch_et_al_2021T.pdf
Description
Hybrid Gold Open Access Version
Size
9.38 MB
Format
Adobe PDF
Checksum (MD5)
a09b79ad166c5f79559a1b49bcb152a1