Options
Understanding seismic path biases and magmatic activity at Mount St Helens volcano before its 2004 eruption
Author(s)
Language
English
Obiettivo Specifico
1T. Struttura della Terra
2V. Struttura e sistema di alimentazione dei vulcani
3IT. Calcolo scientifico
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/222 (2020)
ISSN
0956-540X
Publisher
Oxford University Press
Pages (printed)
169-188
Issued date
April 1, 2020
Subjects
Abstract
In volcanoes, topography, shallow heterogeneity and even shallow morphology can substan- tially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St Helens volcano before its 2004 erup- tion. The results show the characteristic dominance of scattering attenuation in volcanoes at lower frequencies (3–6 Hz), while absorption is the primary attenuation mechanism at 12 and 18 Hz. Scattering attenuation is similar but seismic absorption is one order of magnitude lower than at open-conduit volcanoes, like Etna and Kilauea, a typical behaviour of a (rela- tively) cool magmatic plumbing system. Still, the seismic albedo (measuring the ratio between seismic energy emitted and received from the area) is anomalously high (0.95) at 3 Hz. A radiative-transfer forward model of far- and near-field envelopes confirms this is due to strong near-receiver scattering enhancing anomalous phases in the intermediate and late coda across the 1980 debris avalanche and central crater. Only above this frequency and in the far-field diffusion onsets at late lapse times. The scattering and absorption parameters derived from MLTWA are used as inputs to construct 2-D frequency-dependent bulk sensitivity kernels for the S-wave coda in the multiple-scattering (using the Energy Transport Equations—ETE) and diffusive (AD, independent of MLTWA results) regimes. At 12 Hz, high coda-attenuation anomalies characterize the eastern side of the volcano using both kernels, in spatial correla- tion with low-velocity anomalies from literature. At 3 Hz, the anomalous albedo, the forward modelling, and the results of the tomographic imaging confirm that shallow heterogeneity beneath the extended 1980 debris-avalanche and crater enhance anomalous intermediate and late coda phases, mapping shallow geological contrasts. We remark the effect this may have on coda-dependent source inversion and tomography, currently used across the world to image and monitor volcanoes. At Mount St Helens, higher frequencies and deep borehole data are necessary to reconstruct deep volcanic structures with coda waves.
Sponsors
Scottish Alliance for Geosciences Environment and Society and the Kleinman Grant for Volcano Research
References
Badi, G., Del Pezzo, E., Ibanez, J.M., Bianco, F., Sabbione, N. & Araujo, M., 2009. Depth dependent seismic scattering attenuation in the Nuevo Cuyo region (southern central Andes), Geophys. Res. Lett., 36(24), 1–5.
Bean, C.J., De Barros, L., Lokmer, I., Me ́taxian, J.-P., O?Brien, G. & Murphy, S., 2014. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes, Nature Geoscience, 7(1), 71.
Bianco, F., Castellano, M., Del Pezzo, E. & Ibanez, J.M., 1999. Attenuation of short-period seismic waves at Mt Vesuvius, Italy, J. geophys. Int., 138(1), 67–76.
Brocher, T.M., Wells, R.E., Lamb, A.P. & Weaver, C.S., 2017. Evidence for distributed clockwise rotation of the crust in the northwestern united states from fault geometries and focal mechanisms, Tectonics, 36(5), 787–818.
Canas, J.A., Ugalde, A., Pujades, L.G., Carracedo, J.C., Soler, V. & Blanco, M.J., 1998. Intrinsic and scattering seismic wave attenuation in the Canary Islands, J. geophys. Res., 103(B7), 15 037–15 050.
Chung, T.W., Lees, J.M., Yoshimoto, K., Fujita, E. & Ukawa, M., 2009. In- trinsic and scattering attenuation of the Mt Fuji Region, Japan, J. geophys. Int., 177(3), 1366–1382.
Cormier, V.F. & Sanborn, C.J., 2019. Trade-offs in parameters describing crustal heterogeneity and intrinsic attenuation from radiative transport modeling of high-frequency regional seismograms, Bull. seism. Soc. Am., 109(1), 312–321.
De Siena, L., Del Pezzo, E., Thomas, C., Curtis, A. & Margerin, L., 2013. Seismic energy envelopes in volcanic media: in need of boundary condi- tions, J. geophys. Int., 195(2), 1102–1119.
De Siena, L., Thomas, C., Waite, G.P., Moran, S.C. & Klemme, S., 2014. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens, J. geophys. Res., 119(11), 8223–8238.
De Siena, L., Calvet, M., Watson, K.J., Jonkers, A. R.T. & Thomas, C., 2016. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano, Earth planet. Sci. Lett., 442, 21–31.
De Siena, L., Amoruso, A., Pezzo, E.D., Wakeford, Z., Castellano, M. & Crescentini, L., 2017. Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983-1984 unrest, Geophys. Res. Lett., 44(4), 1740–1748.
Del Pezzo, E. & Bianco, F., 2010. MathLTWA: multiple lapse time window analysis using Wolfram Mathematica 7, Comput. Geosci., 36(10), 1388– 1392.
Del Pezzo, E., Bianco, F., Marzorati, S., Augliera, P., D’Alema, E. & Massa, M., 2011. Depth-dependent intrinsic and scattering seismic attenuation in north central Italy, J. geophys. Int., 186(1), 373–381.
DelPezzo,E.,Bianco,F.,Giampiccolo,E.,Tusa,G.&Tuve ́,T.,2015.A reappraisal of seismic Q evaluated at Mt. Etna volcano. Receipt for the application to risk analysis, J. Seismol., 19(1), 105–119.
Del Pezzo, E., Iban ̃ez, J., Prudencio, J., Bianco, F. & De Siena, L., 2016. Ab- sorption and scattering 2-D volcano images from numerically calculated space-weighting functions, J. geophys. Int., 206(2), 742–756.
Del Pezzo, E., De La Torre, A., Bianco, F., Ibanez, J., Gabrielli, S. & De Siena, L., 2018. Numerically calculated 3D space-weighting functions to image crustal volcanic structures using diffuse coda waves, Geosciences, 8(5), doi:10.3390/geosciences8050175.
DelPezzo,E.,Giampiccolo,E.,Tuve ́,T.,DiGrazia,G.,Gresta,S.&Iba ́n ̃ez, J.M., 2019. Study of the regional pattern of intrinsic and scattering seismic attenuation in Eastern Sicily (Italy) from local earthquakes, J. geophys. Int., 218(2), 1456–1468.
Dutta, U., Biswas, N.N., Adams, D.A. & Papageorgiou, A., 2004. Analysis of S-wave attenuation in south-central Alaska, Bull. seism. Soc. Am., 94(1), 16–28.
Eide, C.H., Schofield, N., Lecomte, I., Buckley, S.J. & Howell, J.A., 2018. Seismic interpretation of sill complexes in sedimentary basins: implica- tions for the sub-sill imaging problem, J. geol. Soc., 175(2), 193–209.
Fehler, M., Roberts, P. & Fairbanks, T., 1988. A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens, J. geophys. Res., 93(7), 4367–4373.
Fehler, M., Hoshiba, M., Sato, H. & Obara, K., 1992. Separation of scat- tering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance, J. geophys. Int., 108(3), 787–800.
Galluzzo, D., La Rocca, M., Margerin, L., Del Pezzo, E. & Scarpa, R., 2015. Attenuation and velocity structure from diffuse coda waves: constraints from underground array data, Phys. Earth planet. Inter., 240, 34–42.
Hansen, S.M., Schmandt, B., Levander, A., Kiser, E., Vidale, J.E., Abers, G.A. & Creager, K.C., 2016. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens, Nat. Commun., 7, 13242.
Hennino, R., Tre ́ goure` s, N., Shapiro, N.M., Margerin, L., Campillo, M., van Tiggelen, B.A. & Weaver, R.L., 2001. Observation of equipartition of seismic waves, Phys. Rev. Lett., 86, 3447–3450.
Hill, G.J., Caldwell, T.G., Heise, W., Chertkoff, D.G., Bibby, H.M., Burgess, M.K., Cull, J.P. & Cas, R.A.F., 2009a. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data, Nat. Geosci., 2(11), 785–789.
Hill, J., Tetzlaff, D., Curtis, A. & Wood, R., 2009b. Modeling shal- low marine carbonate depositional systems, Comput. Geosci., 35(9), 1862–1874.
Iverson, R.M. et al., 2006. Dynamics of seismogenic volcanic ex- trusion at Mount St Helens in 2004-05, Nature, 444(7118), 439–443.
King, T., Benson, P., De Siena, L. & Vinciguerra, S., 2017. Investigating the apparent seismic diffusivity of near-receiver geology at Mount St. Helens Volcano, USA, Geosciences, 7(4), 130.
Kiser, E. et al., 2016. Magma reservoirs from the upper crust to the Moho in- ferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA, Geology, 44(6), 411–414.
Kiser, E., Levander, A., Zelt, C., Schmandt, B. & Hansen, S., 2018. Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions, Geology, 46(9), 775.
Larose, E., Derode, A., Clorennec, D., Margerin, L. & Campillo, M., 2005a. Passive retrieval of Rayleigh waves in disordered elastic media, Phys. Rev. E, 72(4), 046607.
Larose, E., Khan, A., Nakamura, Y. & Campillo, M., 2005b. Lunar subsur- face investigated from correlation of seismic noise, Geophys. Res. Lett., 32(16), 1–4.
Lees, J.M., 1992. The magma system of Mount St. Helens: non-linear high resolution P-wave tomography, J. Volc. Geotherm. Res., 53(1-4), 103–116. Lees, J.M., 2007. Seismic tomography of magmatic systems, J. Volc.
Geotherm. Res., 167(1–4), 37–56.
Lehto, H.L., Roman, D.C. & Moran, S.C., 2013. Source mechanisms of
persistent shallow earthquakes during eruptive and non-eruptive peri- ods between 1981 and 2011 at Mount St. Helens, Washington, J. Volc. Geotherm. Res., 256, 1–15.
Lemzikov, M.V., 2008. Estimation of shear-wave attenuation characteristics for the Klyuchevskoi volcanic edifice, J. Volcanol. Seismol., 2(2), 108– 117.
Londono, J.M., 1996. Temporal change in coda Q at Nevado del Ruiz Vol- cano, Colombia, J. Volc. Geotherm. Res., 73(1–2), 129–139.
Margerin, L., Plane`s, T., Mayor, J. & Calvet, M., 2015. Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and nu- merical evaluation in two-dimensional anisotropically scattering media, J. geophys. Int., 204(1), 650–666.
Downloaded from https://academic.oup.com/gji/article/222/1/169/5814316 by Universitaetsbibliothek Mainz, ldesiena@uni-mainz.de on 05 November 2020
Matoza, R.S. & Chouet, B.A., 2010. Subevents of long-period seismicity: Implications for hydrothermal dynamics during the 2004-2008 eruption of Mount St. Helens, J. geophys. Res., 115(12), 1–26.
Matoza, R.S. et al., 2015. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion, J. geophys. Res., 120(9), 6351– 6364.
Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K. & Zeng, Y., 1992. A comparative study of scattering, intrinsic, and coda q- 1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz, J. geophys. Res., 97(B5), 6643–6659.
Moran, S.C., Malone, S.D., Qamar, A.I., Thelen, W.A., Wright, A.K. & Caplan-Auerbach, J., 2008. Seismicity associated with renewed dome building at Mount St. Helens, 2004–2005, in A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006, Vol. 1750, pp. 27–60, US Geological Survey Menlo Park.
Musumeci, C., Gresta, S. & Malone, S.D., 2002. Magma system recharge of Mount St. Helens from precise relative hypocenter location of mi- croearthquakes, J. geophys. Res., 107(B10), ESE 16–1-ESE 16-9.
Obermann, A., Plane`s, T., Larose, E. & Campillo, M., 2013. Imaging preeruptive and coeruptive structural and mechanical changes of a vol- cano with ambient seismic noise, J. geophys. Res., 118(12), 6285–6294.
Paasschens, J., 1997. Solution of the time-dependent Boltzmann equation, Phys. Rev. E, 56(1), 1135–1141.
Pacheco, C. & Snieder, R., 2005. Time-lapse travel time change of multiply scattered acoustic waves, J. acoust. Soc. Am., 118(3), 1300–1310.
Padhy, S. & Subhadra, N., 2013. Separation of intrinsic and scattering seis- mic wave attenuation in northeast india, J. geophys. Int., 195(3), 1892– 1903.
Pallister, J.S., Hoblitt, R.P., Crandell, D.R. & Mullineaux, D.R., 1992. Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment, Bull. Volcanol., 54(2), 126–146.
Parsons, T. et al., 2006. Crustal structure of the Cascadia Fore Arc of Wash- ington, USGS Professional Paper.
Pisconti, A., Pezzo, E.D., Bianco, F. & Lorenzo, S.D., 2015. Seismic Q estimates in Umbria Marche (Central Italy): hints for the retrieval of a new attenuation law for seismic risk, J. geophys. Int., 201 (3), 1370–1382.
Prudencio, J., Del Pezzo, E., Garc ́ıa-Yeguas, A. & Iba ́n ̃ez, J.M., 2013a. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands – I: model and the case of tenerife Island, J. geophys. Int., 195(3), 1942–1956.
P r u d e n c i o , J . , I b a ́ n ̃ e z , J . M . , G a r c ́ı a - Y e g u a s , A . , D e l P e z z o , E. & Posadas, A.M., 2013b. Spatial distribution of intrin- sic and scattering seismic attenuation in active volcanic is- lands – II: deception island images, J. geophys. Int., 195(3), 1957–1969.
Prudencio, J., Iba ́n ̃ez, J.M., Del Pezzo, E., Mart ́ı, J., Garc ́ıa-Yeguas, A. & De Siena, L., 2015. 3D Attenuation tomography of the volcanic Island of Tenerife (Canary Islands), Surv. Geophys., 36(5), 693–716.
Prudencio, J., Aoki, Y., Takeo, M., Iba ́n ̃ez, J.M., Del Pezzo, E. & Song, W.Z., 2017. Separation of scattering and intrinsic attenuation at Asama volcano (Japan): evidence of high volcanic structural contrasts, J. Volc. Geotherm. Res., 333-334, 96–103.
Prudencio, J., Manga, M. & Taira, T., 2018. Subsurface structure of Long Valley Caldera imaged with seismic scattering and intrinsic attenuation, J. geophys. Res., 123(7), 5987–5999.
Przybilla, J., Wegler, U. & Korn, M., 2009. Estimation of crustal scattering parameters with elastic radiative transfer theory, J. geophys. Int., 178(2), 1105–1111.
Sanborn, C.J., Cormier, V.F. & Fitzpatrick, M., 2017. Combined effects of deterministic and statistical structure on high-frequency regional seismo- grams, J. geophys. Int., 210(2), 1143–1159.
Sato, H., Fehler, M.C. & Maeda, T., 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Vol. 496, Springer.
Scandone, R. & Malone, S.D., 1985. Magma supply, magma discharge and readjustment of the feeding system of mount St. Helens during 1980, J. Volc. Geotherm. Res., 23(3-4), 239–262.
Schilling, S.P., Carrara, P.E., Thompson, R.A. & Iwatsubo, E.Y., 2004. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA, Quater. Res., 61(3), 325–329.
Stanley, W.D., Johnson, S.Y., Qamar, A.I., Weaver, C.S. & Williams, J.M., 1996. Tectonics and seismicity of the Southern Washington cascade range, Bull. seism. Soc. Am., 86(1A), 1.
Tramelli, A., del Pezzo, E. & Fehler, M.C., 2009. 3D scattering image of Mt. Vesuvius, Bull. seism. Soc. Am., 99(3), 1962–1972.
Tusa, G., Malone, S.D., Giampiccolo, E., Gresta, S. & Musumeci, C., 2004. Attenuation of short-period P waves at Mount St. Helens, Bull. seism. Soc. Am., 94(4), 1441–1455.
Ugalde, A., Carcole ́, E. & Vargas, C.A., 2010. S-wave attenuation character- istics in the Galeras volcanic complex (south western Colombia), Phys. Earth planet. Inter., 181(3–4), 73–81.
Vallance, J., Schneider, D. & Schilling, S., 2008. Growth of the 2004-2006 Lava-Dome Complex at Mount St. Helens, Washington, A Volcano Rekin- dled: The Renewed Eruption of Mount St. Helens 2004-2006, U.S. Geo- logical Survey Professional Paper 1750, pp. 169–208.
Waite, G.P. & Moran, S.C., 2009. VP structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography, J. Volc. Geotherm. Res., 182(1–2), 113–122.
Weaver, C. & Smith, S., 1983. Regional tectonic and earthquake hazard im- plications of a crustal fault zone in southwestern Washington, J. geophys. Res., 35(9), 2857–2869.
Wegler, U., 2003. Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the TomoVes active seismic experiment, J. Volc. Geotherm. Res., 128(1–3), 45–63.
Wegler, U. & Lu ̈hr, B.G., 2001. Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment, J. geophys. Int., 145(3), 579–592.
Bean, C.J., De Barros, L., Lokmer, I., Me ́taxian, J.-P., O?Brien, G. & Murphy, S., 2014. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes, Nature Geoscience, 7(1), 71.
Bianco, F., Castellano, M., Del Pezzo, E. & Ibanez, J.M., 1999. Attenuation of short-period seismic waves at Mt Vesuvius, Italy, J. geophys. Int., 138(1), 67–76.
Brocher, T.M., Wells, R.E., Lamb, A.P. & Weaver, C.S., 2017. Evidence for distributed clockwise rotation of the crust in the northwestern united states from fault geometries and focal mechanisms, Tectonics, 36(5), 787–818.
Canas, J.A., Ugalde, A., Pujades, L.G., Carracedo, J.C., Soler, V. & Blanco, M.J., 1998. Intrinsic and scattering seismic wave attenuation in the Canary Islands, J. geophys. Res., 103(B7), 15 037–15 050.
Chung, T.W., Lees, J.M., Yoshimoto, K., Fujita, E. & Ukawa, M., 2009. In- trinsic and scattering attenuation of the Mt Fuji Region, Japan, J. geophys. Int., 177(3), 1366–1382.
Cormier, V.F. & Sanborn, C.J., 2019. Trade-offs in parameters describing crustal heterogeneity and intrinsic attenuation from radiative transport modeling of high-frequency regional seismograms, Bull. seism. Soc. Am., 109(1), 312–321.
De Siena, L., Del Pezzo, E., Thomas, C., Curtis, A. & Margerin, L., 2013. Seismic energy envelopes in volcanic media: in need of boundary condi- tions, J. geophys. Int., 195(2), 1102–1119.
De Siena, L., Thomas, C., Waite, G.P., Moran, S.C. & Klemme, S., 2014. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens, J. geophys. Res., 119(11), 8223–8238.
De Siena, L., Calvet, M., Watson, K.J., Jonkers, A. R.T. & Thomas, C., 2016. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano, Earth planet. Sci. Lett., 442, 21–31.
De Siena, L., Amoruso, A., Pezzo, E.D., Wakeford, Z., Castellano, M. & Crescentini, L., 2017. Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983-1984 unrest, Geophys. Res. Lett., 44(4), 1740–1748.
Del Pezzo, E. & Bianco, F., 2010. MathLTWA: multiple lapse time window analysis using Wolfram Mathematica 7, Comput. Geosci., 36(10), 1388– 1392.
Del Pezzo, E., Bianco, F., Marzorati, S., Augliera, P., D’Alema, E. & Massa, M., 2011. Depth-dependent intrinsic and scattering seismic attenuation in north central Italy, J. geophys. Int., 186(1), 373–381.
DelPezzo,E.,Bianco,F.,Giampiccolo,E.,Tusa,G.&Tuve ́,T.,2015.A reappraisal of seismic Q evaluated at Mt. Etna volcano. Receipt for the application to risk analysis, J. Seismol., 19(1), 105–119.
Del Pezzo, E., Iban ̃ez, J., Prudencio, J., Bianco, F. & De Siena, L., 2016. Ab- sorption and scattering 2-D volcano images from numerically calculated space-weighting functions, J. geophys. Int., 206(2), 742–756.
Del Pezzo, E., De La Torre, A., Bianco, F., Ibanez, J., Gabrielli, S. & De Siena, L., 2018. Numerically calculated 3D space-weighting functions to image crustal volcanic structures using diffuse coda waves, Geosciences, 8(5), doi:10.3390/geosciences8050175.
DelPezzo,E.,Giampiccolo,E.,Tuve ́,T.,DiGrazia,G.,Gresta,S.&Iba ́n ̃ez, J.M., 2019. Study of the regional pattern of intrinsic and scattering seismic attenuation in Eastern Sicily (Italy) from local earthquakes, J. geophys. Int., 218(2), 1456–1468.
Dutta, U., Biswas, N.N., Adams, D.A. & Papageorgiou, A., 2004. Analysis of S-wave attenuation in south-central Alaska, Bull. seism. Soc. Am., 94(1), 16–28.
Eide, C.H., Schofield, N., Lecomte, I., Buckley, S.J. & Howell, J.A., 2018. Seismic interpretation of sill complexes in sedimentary basins: implica- tions for the sub-sill imaging problem, J. geol. Soc., 175(2), 193–209.
Fehler, M., Roberts, P. & Fairbanks, T., 1988. A temporal change in coda wave attenuation observed during an eruption of Mount St. Helens, J. geophys. Res., 93(7), 4367–4373.
Fehler, M., Hoshiba, M., Sato, H. & Obara, K., 1992. Separation of scat- tering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance, J. geophys. Int., 108(3), 787–800.
Galluzzo, D., La Rocca, M., Margerin, L., Del Pezzo, E. & Scarpa, R., 2015. Attenuation and velocity structure from diffuse coda waves: constraints from underground array data, Phys. Earth planet. Inter., 240, 34–42.
Hansen, S.M., Schmandt, B., Levander, A., Kiser, E., Vidale, J.E., Abers, G.A. & Creager, K.C., 2016. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens, Nat. Commun., 7, 13242.
Hennino, R., Tre ́ goure` s, N., Shapiro, N.M., Margerin, L., Campillo, M., van Tiggelen, B.A. & Weaver, R.L., 2001. Observation of equipartition of seismic waves, Phys. Rev. Lett., 86, 3447–3450.
Hill, G.J., Caldwell, T.G., Heise, W., Chertkoff, D.G., Bibby, H.M., Burgess, M.K., Cull, J.P. & Cas, R.A.F., 2009a. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data, Nat. Geosci., 2(11), 785–789.
Hill, J., Tetzlaff, D., Curtis, A. & Wood, R., 2009b. Modeling shal- low marine carbonate depositional systems, Comput. Geosci., 35(9), 1862–1874.
Iverson, R.M. et al., 2006. Dynamics of seismogenic volcanic ex- trusion at Mount St Helens in 2004-05, Nature, 444(7118), 439–443.
King, T., Benson, P., De Siena, L. & Vinciguerra, S., 2017. Investigating the apparent seismic diffusivity of near-receiver geology at Mount St. Helens Volcano, USA, Geosciences, 7(4), 130.
Kiser, E. et al., 2016. Magma reservoirs from the upper crust to the Moho in- ferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA, Geology, 44(6), 411–414.
Kiser, E., Levander, A., Zelt, C., Schmandt, B. & Hansen, S., 2018. Focusing of melt near the top of the Mount St. Helens (USA) magma reservoir and its relationship to major volcanic eruptions, Geology, 46(9), 775.
Larose, E., Derode, A., Clorennec, D., Margerin, L. & Campillo, M., 2005a. Passive retrieval of Rayleigh waves in disordered elastic media, Phys. Rev. E, 72(4), 046607.
Larose, E., Khan, A., Nakamura, Y. & Campillo, M., 2005b. Lunar subsur- face investigated from correlation of seismic noise, Geophys. Res. Lett., 32(16), 1–4.
Lees, J.M., 1992. The magma system of Mount St. Helens: non-linear high resolution P-wave tomography, J. Volc. Geotherm. Res., 53(1-4), 103–116. Lees, J.M., 2007. Seismic tomography of magmatic systems, J. Volc.
Geotherm. Res., 167(1–4), 37–56.
Lehto, H.L., Roman, D.C. & Moran, S.C., 2013. Source mechanisms of
persistent shallow earthquakes during eruptive and non-eruptive peri- ods between 1981 and 2011 at Mount St. Helens, Washington, J. Volc. Geotherm. Res., 256, 1–15.
Lemzikov, M.V., 2008. Estimation of shear-wave attenuation characteristics for the Klyuchevskoi volcanic edifice, J. Volcanol. Seismol., 2(2), 108– 117.
Londono, J.M., 1996. Temporal change in coda Q at Nevado del Ruiz Vol- cano, Colombia, J. Volc. Geotherm. Res., 73(1–2), 129–139.
Margerin, L., Plane`s, T., Mayor, J. & Calvet, M., 2015. Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and nu- merical evaluation in two-dimensional anisotropically scattering media, J. geophys. Int., 204(1), 650–666.
Downloaded from https://academic.oup.com/gji/article/222/1/169/5814316 by Universitaetsbibliothek Mainz, ldesiena@uni-mainz.de on 05 November 2020
Matoza, R.S. & Chouet, B.A., 2010. Subevents of long-period seismicity: Implications for hydrothermal dynamics during the 2004-2008 eruption of Mount St. Helens, J. geophys. Res., 115(12), 1–26.
Matoza, R.S. et al., 2015. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion, J. geophys. Res., 120(9), 6351– 6364.
Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K. & Zeng, Y., 1992. A comparative study of scattering, intrinsic, and coda q- 1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz, J. geophys. Res., 97(B5), 6643–6659.
Moran, S.C., Malone, S.D., Qamar, A.I., Thelen, W.A., Wright, A.K. & Caplan-Auerbach, J., 2008. Seismicity associated with renewed dome building at Mount St. Helens, 2004–2005, in A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006, Vol. 1750, pp. 27–60, US Geological Survey Menlo Park.
Musumeci, C., Gresta, S. & Malone, S.D., 2002. Magma system recharge of Mount St. Helens from precise relative hypocenter location of mi- croearthquakes, J. geophys. Res., 107(B10), ESE 16–1-ESE 16-9.
Obermann, A., Plane`s, T., Larose, E. & Campillo, M., 2013. Imaging preeruptive and coeruptive structural and mechanical changes of a vol- cano with ambient seismic noise, J. geophys. Res., 118(12), 6285–6294.
Paasschens, J., 1997. Solution of the time-dependent Boltzmann equation, Phys. Rev. E, 56(1), 1135–1141.
Pacheco, C. & Snieder, R., 2005. Time-lapse travel time change of multiply scattered acoustic waves, J. acoust. Soc. Am., 118(3), 1300–1310.
Padhy, S. & Subhadra, N., 2013. Separation of intrinsic and scattering seis- mic wave attenuation in northeast india, J. geophys. Int., 195(3), 1892– 1903.
Pallister, J.S., Hoblitt, R.P., Crandell, D.R. & Mullineaux, D.R., 1992. Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment, Bull. Volcanol., 54(2), 126–146.
Parsons, T. et al., 2006. Crustal structure of the Cascadia Fore Arc of Wash- ington, USGS Professional Paper.
Pisconti, A., Pezzo, E.D., Bianco, F. & Lorenzo, S.D., 2015. Seismic Q estimates in Umbria Marche (Central Italy): hints for the retrieval of a new attenuation law for seismic risk, J. geophys. Int., 201 (3), 1370–1382.
Prudencio, J., Del Pezzo, E., Garc ́ıa-Yeguas, A. & Iba ́n ̃ez, J.M., 2013a. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands – I: model and the case of tenerife Island, J. geophys. Int., 195(3), 1942–1956.
P r u d e n c i o , J . , I b a ́ n ̃ e z , J . M . , G a r c ́ı a - Y e g u a s , A . , D e l P e z z o , E. & Posadas, A.M., 2013b. Spatial distribution of intrin- sic and scattering seismic attenuation in active volcanic is- lands – II: deception island images, J. geophys. Int., 195(3), 1957–1969.
Prudencio, J., Iba ́n ̃ez, J.M., Del Pezzo, E., Mart ́ı, J., Garc ́ıa-Yeguas, A. & De Siena, L., 2015. 3D Attenuation tomography of the volcanic Island of Tenerife (Canary Islands), Surv. Geophys., 36(5), 693–716.
Prudencio, J., Aoki, Y., Takeo, M., Iba ́n ̃ez, J.M., Del Pezzo, E. & Song, W.Z., 2017. Separation of scattering and intrinsic attenuation at Asama volcano (Japan): evidence of high volcanic structural contrasts, J. Volc. Geotherm. Res., 333-334, 96–103.
Prudencio, J., Manga, M. & Taira, T., 2018. Subsurface structure of Long Valley Caldera imaged with seismic scattering and intrinsic attenuation, J. geophys. Res., 123(7), 5987–5999.
Przybilla, J., Wegler, U. & Korn, M., 2009. Estimation of crustal scattering parameters with elastic radiative transfer theory, J. geophys. Int., 178(2), 1105–1111.
Sanborn, C.J., Cormier, V.F. & Fitzpatrick, M., 2017. Combined effects of deterministic and statistical structure on high-frequency regional seismo- grams, J. geophys. Int., 210(2), 1143–1159.
Sato, H., Fehler, M.C. & Maeda, T., 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Vol. 496, Springer.
Scandone, R. & Malone, S.D., 1985. Magma supply, magma discharge and readjustment of the feeding system of mount St. Helens during 1980, J. Volc. Geotherm. Res., 23(3-4), 239–262.
Schilling, S.P., Carrara, P.E., Thompson, R.A. & Iwatsubo, E.Y., 2004. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA, Quater. Res., 61(3), 325–329.
Stanley, W.D., Johnson, S.Y., Qamar, A.I., Weaver, C.S. & Williams, J.M., 1996. Tectonics and seismicity of the Southern Washington cascade range, Bull. seism. Soc. Am., 86(1A), 1.
Tramelli, A., del Pezzo, E. & Fehler, M.C., 2009. 3D scattering image of Mt. Vesuvius, Bull. seism. Soc. Am., 99(3), 1962–1972.
Tusa, G., Malone, S.D., Giampiccolo, E., Gresta, S. & Musumeci, C., 2004. Attenuation of short-period P waves at Mount St. Helens, Bull. seism. Soc. Am., 94(4), 1441–1455.
Ugalde, A., Carcole ́, E. & Vargas, C.A., 2010. S-wave attenuation character- istics in the Galeras volcanic complex (south western Colombia), Phys. Earth planet. Inter., 181(3–4), 73–81.
Vallance, J., Schneider, D. & Schilling, S., 2008. Growth of the 2004-2006 Lava-Dome Complex at Mount St. Helens, Washington, A Volcano Rekin- dled: The Renewed Eruption of Mount St. Helens 2004-2006, U.S. Geo- logical Survey Professional Paper 1750, pp. 169–208.
Waite, G.P. & Moran, S.C., 2009. VP structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography, J. Volc. Geotherm. Res., 182(1–2), 113–122.
Weaver, C. & Smith, S., 1983. Regional tectonic and earthquake hazard im- plications of a crustal fault zone in southwestern Washington, J. geophys. Res., 35(9), 2857–2869.
Wegler, U., 2003. Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the TomoVes active seismic experiment, J. Volc. Geotherm. Res., 128(1–3), 45–63.
Wegler, U. & Lu ̈hr, B.G., 2001. Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment, J. geophys. Int., 145(3), 579–592.
Description
This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy.
All rights reserved.
All rights reserved.
Type
article
File(s)
Loading...
Name
Gabrielli2020a.pdf
Size
13.55 MB
Format
Adobe PDF
Checksum (MD5)
961d80549865efd8dbbf1297be70ff64