Options
Fluid geochemistry as indicator of tectonically-related, deep water circulations in the Sardinian Rift-Campidano Graben: new insights from environmental isotopes.
Author(s)
Language
English
Obiettivo Specifico
4.5. Degassamento naturale
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/14 (2008)
Publisher
Springer Science
Pages (printed)
301-319
Issued date
2008
Keywords
Abstract
The EC funded Geochemical Seismic Zonation program (EEC GSZ Project 1996-98) chose Sardinia as a low-seismicity site, in which the relationships between fluid geochemistry and seismo-tectonics had to be investigated and results compared with outcomes from other selected high-seismicity sites. A first paper, examining the role of fault segmentation and seismic quiescence on the geochemical composition of groundwaters and gases, has already been presented (Angelone et al. 2005). This paper deals with environmental isotopes which, together with selected hydrochemical data, give hints on tectonically-related fluid circulations.
Four water-dominated hydrothermal systems were considered, all located along regional fault systems and discharging groundwaters belonging to the Na-HCO3 and Na-Cl facies. In the considered systems, groundwater circulation takes place, principally, in the Palaeozoic Crystalline Basement (PCB), with the exception of the Logudoro system, where hydrological circuits develop in the Mesozoic Carbonate Platform (MCP). The high CO2 contents, the non-attainment of fluid-rock equilibrium and the large lithological variability prevent the construction of a unique hydrogeological-geochemical conceptual model. In this case, stable isotopes provide a useful tool to describe the origin of fluids and their subterranean movements.
Stable isotopes of water, integrated with hydrochemical data, indicate that fluids are derived from three main endmembers. The dominant component is a relatively recent local meteoric water, the second one is marine water, and the third one is a fossil freshwater, depleted in heavy isotopes with respect to modern rains. The latter endmember entered the aquifer system in the past, when climatic conditions were greatly different from today.
At least two circulation systems can be recognised, namely a shallow cold system and a deep hydrothermal system, as well as two distinct hydrological processes: (1) gravity-controlled descent of cold water towards greater depths and (2) convection linked to a thermal gradient, causing deep fluids to rise up from the hydrothermal reservoir towards the surface.
The highly variable 13CTDIC values suggest the presence of two distinct CO2 sources, namely a biogenic one and a thermogenic one. The relation between the isotopic compositions of CO2 and He indicates an increased mantle signature in uprising CO2-rich fluids.
Four water-dominated hydrothermal systems were considered, all located along regional fault systems and discharging groundwaters belonging to the Na-HCO3 and Na-Cl facies. In the considered systems, groundwater circulation takes place, principally, in the Palaeozoic Crystalline Basement (PCB), with the exception of the Logudoro system, where hydrological circuits develop in the Mesozoic Carbonate Platform (MCP). The high CO2 contents, the non-attainment of fluid-rock equilibrium and the large lithological variability prevent the construction of a unique hydrogeological-geochemical conceptual model. In this case, stable isotopes provide a useful tool to describe the origin of fluids and their subterranean movements.
Stable isotopes of water, integrated with hydrochemical data, indicate that fluids are derived from three main endmembers. The dominant component is a relatively recent local meteoric water, the second one is marine water, and the third one is a fossil freshwater, depleted in heavy isotopes with respect to modern rains. The latter endmember entered the aquifer system in the past, when climatic conditions were greatly different from today.
At least two circulation systems can be recognised, namely a shallow cold system and a deep hydrothermal system, as well as two distinct hydrological processes: (1) gravity-controlled descent of cold water towards greater depths and (2) convection linked to a thermal gradient, causing deep fluids to rise up from the hydrothermal reservoir towards the surface.
The highly variable 13CTDIC values suggest the presence of two distinct CO2 sources, namely a biogenic one and a thermogenic one. The relation between the isotopic compositions of CO2 and He indicates an increased mantle signature in uprising CO2-rich fluids.
References
Angelone M, Gasparini C, Guerra M, Lombardi S, Pizzino L, Quattrocchi F, Sacchi E, Zuppi GM (2005) Fluid geochemistry of the Sardinian Rift-Campidano Graben (Sardinia, Italy): fault segmentation, seismic quiescence of geochemically “active” faults, and new constraints for selection of CO2 storage sites. Appl Geochem 20(2):317-340
Barrocu G, Vernier A, Ardau F, Salis N, Sanna F, Sciabica MG, Soddu S. (2004) Hydrogeology of the Island of Sardinia (Italy). In: Proceedings of the 32nd International Geological Congress, ITALY 2004, 5: P37-P54 Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Sitzia R, Zuddas P (1982a) Idrogeochimica del Graben del Campidano. CNR CNR-PFE-SPEG-RF-10, CNR, Pisa, Italy: 104–123
Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Panichi C, Sitzia R, Zuddas P (1982b) Alcune considerazioni sulla geochimica delle acque del Campidano. CNR CNR-PFE-SPEG-RF-10, CNR, Pisa, Italy: 133–143
Boschi E, Guidoboni E, Ferrari G, Valensise G, Gasperini P (1997) Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990. ING-SGA Publ, ING, Roma, Italy
Caboi R, Cidu R, Fanfani L, Zuddas P (1986) Geochemistry of thermal waters in Sardinia (Italy). In: Armannsson H (ed) Proceedings WRI-5. Balkema, Rotterdam: 198-202
Caboi R. Cidu R. Cristini A, Fanfani L, Zuddas P (1989) The geothermal area of the Tirso Valley (Sardinia, Italy). In: Miles DL (ed.) Proceedings WRI-6. Balkema, Rotterdam: 125–128
Caboi R, Cidu R, Fanfani L, Zuddas P, Zanzari AR (1993) Geochemistry of the high-pCO2 waters in Logudoro, Sardinia, Italy. Appl Geochem 8 (2):153-160
Carmignani L, Barca S, Disperati L, Fantozzi P, Funedda A, Oggiano G, Pasci S (1994) Tertiary compression and extension in Sardinian Basement. Boll Geof Teor Appl 36:45-62
Carmignani L, Rossi P, Barca S, Durand-Delga M, Lahondere D, Oggiano G, Salvatori I, Conti P, Eltrudis J, Funedda A, Pasci S, Cerchi GP, Disperati L, Ferrandini J, Loye-Pilot MD, Sartia E, Spano C (2000) Carta geologica e strutturale della Sardegna e della Corsica, scala 1/500000. Servizio geologico d’Italia, Regione Sardegna, BRGM, Collectivité Territoriale de Corse.
Casula G, Cherchi A, Montadert L, Murru M. (2001) The Cenozoic Graben System of Sardinia (Italy): geodynamic evolution from new seismic and field data. Mar Petrol Geol 18: 863-888
Celle H, Gonfiantini R, Travi Y, Sol B (2004) Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model to selected rainfalls in Southern France. J Hydrol 289 (1-4):165-177
Chéry L (1988) Essai de caractérisation géochimique et isotopique d’émergences de circulations profondes dans deux types de massifs granitiques: Auriat (Creuse) et La Sposata (Corse). Ph.D. dissertation, Université de Paris- Sud, Orsay, France
Cidu R, Mulas AD (2003) Geochemical features of thermal waters at Benetutti (Sardinia). Rend Sem Fac Sci Univ Cagliari 73:1–14
Ciminale M, Galdeano A, Gibert D, Loddo M, Pecorini G, Zito G (1985) Magnetic Survey in the Campidano Graben (Sardinia): description and interpretation. Boll Geof Teor Appl 27: 221-235
Clark I, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, New York
Coleman ML, Sheppard TJ, Durham JJ, Rouse JE, Moore GR (1982) Reaction of water with zinc for hydrogen isotopes analysis. Anal Chem 54: 993-995
D’Amore F, Panichi C (1980) Evaluation of deep temperature of hydrothermal systems by a new gas-geothermometer. Geochim Cosmochim Acta 44:549-556
Deines, P. (1970) The carbon and oxygen isotopic composition of carbonates from the Oka Carbonatite complex, Quebec, Canada. Geoch. Cosm. Acta 34: 1199 – 1225.
Dragoni M, Doglioni C, Mongelli F, Zito G (1996) Evaluation of stresses in two geodynamically different areas: stable foreland and extensional back-arc. Pure Appl Geophys 146 (2):319-341
Edmunds MW, Dodo A, Djoret D, Gasse F, Gaye CB, Goni IB, Travi Y, Zouari K, Zuppi GM (2004) Groundwater as an archive of climatic and environmental change: Europe to Africa. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa, 6, Springer Netherlands, Dordrecht: 279-306.
EEC GSZ Project (1996-98) Geochemical Seismic Zonation. Seismic Hazard Zonation: a multidisciplinary approach using fluid-geochemistry methods. EEC Contract No. ENV4-CT96-0291, EEC Community DG XII, Brussels, Belgium.
Egger A, Demartin M, Ansorge J, Banda E, Maistrello M (1988) The gross structure of the crust under Corsica and Sardinia. Tectonophysics 150:363-389
Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geoch. Cosmoch. Acta 4 (5):213-224.
Favara, R., Grassa, F., Inguaggiato, S., Pecoraino, G. and Capasso, G. (2002) A simple method to determine the 13C content of total dissolved inorganic carbon. Geofis. Intern. 41: 313 – 320.
Giggenbach W.F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52 (12):2749-2765
Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267:729-804
Kroopnick P (1974) The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep-sea Res 21:211-227
Lombardi S (Project Leader), Angelone M, Barbieri M, Billi A, Brunori C A, Buongiorno F, Ciotoli G, Di Filippo M, Doumaz F, Duddridge G A, Funiciello R, Fytikas M, Grainger P, Guerra M, Marty B, Mele G, Montone P, Orlandi C, Papachristou M, Pavlidis S, Pizzino L, Pongetti F, Quattrocchi F, Romeo G, Ruspandini T, Sacchi E, Salvi S, Salvini P, Scarlato F, Sciacca U, Soulakellis N, Taccetti Q, Toro B, Urbini G, Voltattorni N, Zouros N, Zuppi GM, (1999) Geochemical Seismic Zonation. Seismic Hazard Zonation: a multidisciplinary approach using fluid-geochemistry method. Final Report Contract No. ENV4-CT96-0291. EC Commission, DGXII, Brussels, Belgium.
Mazor E, Nativ R (1994) Stagnant groundwater stored in isolated aquifers: implications related to hydraulic calculations and isotopic dating – reply. J Hydrol 154(1-4):409-418
Minissale A, Magro G, Tassi F, Frau F, Vaselli O (19771999) The origin of natural gas emissions from Sardinia Island. Geochem J 33:1-12
Mook, W.G., Bommerson, J.C. and Staverman, W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plan. Sci. Lett. 22 (2):169 – 176.
Morse JW, Bender ML (1990) Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82:265-277
Mutlu H, Güleç N, Hilton D. R (2008) Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey. Chem. Geol. 247:305-321
Nuti S, Fancelli R, Dettori B, Passino AM, D’Amore F (1977) Il termalismo della provincia di Sassari. Possibile modello del circuito idrotermale di Casteldoria. Boll Soc Geol Ital 96:491-504
Pala A, Pecorini G, Porcu A, Serra S (1982) Schema geologico strutturale della Sardegna. In: Ricerche Geotermiche in Sardegna con particolare riferimento al Graben del Campidano. CNR-PFE-SPEG-RF10, CNR, Pisa, Italy: 7-24.
Pala A, Pecorini G, Porcu A, Serra S (1982b) Geologia e idrogeologia del Campidano. In: Ricerche Geotermiche in Sardegna. CNR-PFE-SPEG-RF10, CNR, Pisa, Italy: 87-103
Panichi C (1982) Carta delle temperature sotterranee. CNR-PFE-RF-10, CNR, Roma, Italy
Pecorini G, Pomesano Cerchi A (1969) Ricerche geologiche e biostratigrafiche sul Campidano meridionale (Sardegna). Mem Soc Geol Ital 8: 421-451
Quattrocchi F (1999) In search of evidences of deep fluid discharges and pore pressure evolution in the crust to explain the seismicity style of Umbria-Marche 1997-98 seismic sequence (Central Italy). Annali di Geofisica 42 (4):609-636
Quattrocchi F, Guerra M, Pizzino L, Lombardi, S (1999) Radon and Helium as pathfinders of fault system and groundwater evolution in different Italian areas. Nuovo Cimento 22 C (3-4):309-316
Quattrocchi F, Pik R, Angelone M, Barbieri M, Conti M, Guerra M, Lombardi S, Marty B, Pizzino L, Sacchi E, Scarlato P, Zuppi GM (2000) Geochemical changes at the Bagni di Triponzo thermal spring, during the Umbria-Marche 1997-98 seismic sequence. J Seismol 4 (4):567-587
Salvi S, Quattrocchi F, Angelone M, Brunori CA, Billi A, Buongiorno F, Doumaz F, Funiciello R, Guerra M, Lombardi S, Mele G, Pizzino L, Salvini F (2000) A multidisciplinary approach to earthquake research: implementation of a Geochemical Geographic Information System for the Gargano site, Southern Italy. Nat Hazards 20 (2-3): 255-278.
Schoell M (1983) Genetic characterization of natural gases. AAPG Bulletin 67: 2225-2238.
Truesdell AH (1984) Chemical geothermometers for geothermal exploration. In: Henley RM, Truesdell AH, Barton PB Jr, Whitney JA (eds) Fluid-Mineral Equilibria in Hydrothermal Systems. Reviews in Economic Geology 1: 31-43
Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci Rev 21(1-3):295-305
Barrocu G, Vernier A, Ardau F, Salis N, Sanna F, Sciabica MG, Soddu S. (2004) Hydrogeology of the Island of Sardinia (Italy). In: Proceedings of the 32nd International Geological Congress, ITALY 2004, 5: P37-P54 Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Sitzia R, Zuddas P (1982a) Idrogeochimica del Graben del Campidano. CNR CNR-PFE-SPEG-RF-10, CNR, Pisa, Italy: 104–123
Bertorino G, Caboi R, Caredda AM, Cidu R, Fanfani L, Panichi C, Sitzia R, Zuddas P (1982b) Alcune considerazioni sulla geochimica delle acque del Campidano. CNR CNR-PFE-SPEG-RF-10, CNR, Pisa, Italy: 133–143
Boschi E, Guidoboni E, Ferrari G, Valensise G, Gasperini P (1997) Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990. ING-SGA Publ, ING, Roma, Italy
Caboi R, Cidu R, Fanfani L, Zuddas P (1986) Geochemistry of thermal waters in Sardinia (Italy). In: Armannsson H (ed) Proceedings WRI-5. Balkema, Rotterdam: 198-202
Caboi R. Cidu R. Cristini A, Fanfani L, Zuddas P (1989) The geothermal area of the Tirso Valley (Sardinia, Italy). In: Miles DL (ed.) Proceedings WRI-6. Balkema, Rotterdam: 125–128
Caboi R, Cidu R, Fanfani L, Zuddas P, Zanzari AR (1993) Geochemistry of the high-pCO2 waters in Logudoro, Sardinia, Italy. Appl Geochem 8 (2):153-160
Carmignani L, Barca S, Disperati L, Fantozzi P, Funedda A, Oggiano G, Pasci S (1994) Tertiary compression and extension in Sardinian Basement. Boll Geof Teor Appl 36:45-62
Carmignani L, Rossi P, Barca S, Durand-Delga M, Lahondere D, Oggiano G, Salvatori I, Conti P, Eltrudis J, Funedda A, Pasci S, Cerchi GP, Disperati L, Ferrandini J, Loye-Pilot MD, Sartia E, Spano C (2000) Carta geologica e strutturale della Sardegna e della Corsica, scala 1/500000. Servizio geologico d’Italia, Regione Sardegna, BRGM, Collectivité Territoriale de Corse.
Casula G, Cherchi A, Montadert L, Murru M. (2001) The Cenozoic Graben System of Sardinia (Italy): geodynamic evolution from new seismic and field data. Mar Petrol Geol 18: 863-888
Celle H, Gonfiantini R, Travi Y, Sol B (2004) Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model to selected rainfalls in Southern France. J Hydrol 289 (1-4):165-177
Chéry L (1988) Essai de caractérisation géochimique et isotopique d’émergences de circulations profondes dans deux types de massifs granitiques: Auriat (Creuse) et La Sposata (Corse). Ph.D. dissertation, Université de Paris- Sud, Orsay, France
Cidu R, Mulas AD (2003) Geochemical features of thermal waters at Benetutti (Sardinia). Rend Sem Fac Sci Univ Cagliari 73:1–14
Ciminale M, Galdeano A, Gibert D, Loddo M, Pecorini G, Zito G (1985) Magnetic Survey in the Campidano Graben (Sardinia): description and interpretation. Boll Geof Teor Appl 27: 221-235
Clark I, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, New York
Coleman ML, Sheppard TJ, Durham JJ, Rouse JE, Moore GR (1982) Reaction of water with zinc for hydrogen isotopes analysis. Anal Chem 54: 993-995
D’Amore F, Panichi C (1980) Evaluation of deep temperature of hydrothermal systems by a new gas-geothermometer. Geochim Cosmochim Acta 44:549-556
Deines, P. (1970) The carbon and oxygen isotopic composition of carbonates from the Oka Carbonatite complex, Quebec, Canada. Geoch. Cosm. Acta 34: 1199 – 1225.
Dragoni M, Doglioni C, Mongelli F, Zito G (1996) Evaluation of stresses in two geodynamically different areas: stable foreland and extensional back-arc. Pure Appl Geophys 146 (2):319-341
Edmunds MW, Dodo A, Djoret D, Gasse F, Gaye CB, Goni IB, Travi Y, Zouari K, Zuppi GM (2004) Groundwater as an archive of climatic and environmental change: Europe to Africa. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa, 6, Springer Netherlands, Dordrecht: 279-306.
EEC GSZ Project (1996-98) Geochemical Seismic Zonation. Seismic Hazard Zonation: a multidisciplinary approach using fluid-geochemistry methods. EEC Contract No. ENV4-CT96-0291, EEC Community DG XII, Brussels, Belgium.
Egger A, Demartin M, Ansorge J, Banda E, Maistrello M (1988) The gross structure of the crust under Corsica and Sardinia. Tectonophysics 150:363-389
Epstein S, Mayeda TK (1953) Variations of the 18O/16O ratio in natural waters. Geoch. Cosmoch. Acta 4 (5):213-224.
Favara, R., Grassa, F., Inguaggiato, S., Pecoraino, G. and Capasso, G. (2002) A simple method to determine the 13C content of total dissolved inorganic carbon. Geofis. Intern. 41: 313 – 320.
Giggenbach W.F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52 (12):2749-2765
Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267:729-804
Kroopnick P (1974) The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep-sea Res 21:211-227
Lombardi S (Project Leader), Angelone M, Barbieri M, Billi A, Brunori C A, Buongiorno F, Ciotoli G, Di Filippo M, Doumaz F, Duddridge G A, Funiciello R, Fytikas M, Grainger P, Guerra M, Marty B, Mele G, Montone P, Orlandi C, Papachristou M, Pavlidis S, Pizzino L, Pongetti F, Quattrocchi F, Romeo G, Ruspandini T, Sacchi E, Salvi S, Salvini P, Scarlato F, Sciacca U, Soulakellis N, Taccetti Q, Toro B, Urbini G, Voltattorni N, Zouros N, Zuppi GM, (1999) Geochemical Seismic Zonation. Seismic Hazard Zonation: a multidisciplinary approach using fluid-geochemistry method. Final Report Contract No. ENV4-CT96-0291. EC Commission, DGXII, Brussels, Belgium.
Mazor E, Nativ R (1994) Stagnant groundwater stored in isolated aquifers: implications related to hydraulic calculations and isotopic dating – reply. J Hydrol 154(1-4):409-418
Minissale A, Magro G, Tassi F, Frau F, Vaselli O (19771999) The origin of natural gas emissions from Sardinia Island. Geochem J 33:1-12
Mook, W.G., Bommerson, J.C. and Staverman, W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plan. Sci. Lett. 22 (2):169 – 176.
Morse JW, Bender ML (1990) Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82:265-277
Mutlu H, Güleç N, Hilton D. R (2008) Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey. Chem. Geol. 247:305-321
Nuti S, Fancelli R, Dettori B, Passino AM, D’Amore F (1977) Il termalismo della provincia di Sassari. Possibile modello del circuito idrotermale di Casteldoria. Boll Soc Geol Ital 96:491-504
Pala A, Pecorini G, Porcu A, Serra S (1982) Schema geologico strutturale della Sardegna. In: Ricerche Geotermiche in Sardegna con particolare riferimento al Graben del Campidano. CNR-PFE-SPEG-RF10, CNR, Pisa, Italy: 7-24.
Pala A, Pecorini G, Porcu A, Serra S (1982b) Geologia e idrogeologia del Campidano. In: Ricerche Geotermiche in Sardegna. CNR-PFE-SPEG-RF10, CNR, Pisa, Italy: 87-103
Panichi C (1982) Carta delle temperature sotterranee. CNR-PFE-RF-10, CNR, Roma, Italy
Pecorini G, Pomesano Cerchi A (1969) Ricerche geologiche e biostratigrafiche sul Campidano meridionale (Sardegna). Mem Soc Geol Ital 8: 421-451
Quattrocchi F (1999) In search of evidences of deep fluid discharges and pore pressure evolution in the crust to explain the seismicity style of Umbria-Marche 1997-98 seismic sequence (Central Italy). Annali di Geofisica 42 (4):609-636
Quattrocchi F, Guerra M, Pizzino L, Lombardi, S (1999) Radon and Helium as pathfinders of fault system and groundwater evolution in different Italian areas. Nuovo Cimento 22 C (3-4):309-316
Quattrocchi F, Pik R, Angelone M, Barbieri M, Conti M, Guerra M, Lombardi S, Marty B, Pizzino L, Sacchi E, Scarlato P, Zuppi GM (2000) Geochemical changes at the Bagni di Triponzo thermal spring, during the Umbria-Marche 1997-98 seismic sequence. J Seismol 4 (4):567-587
Salvi S, Quattrocchi F, Angelone M, Brunori CA, Billi A, Buongiorno F, Doumaz F, Funiciello R, Guerra M, Lombardi S, Mele G, Pizzino L, Salvini F (2000) A multidisciplinary approach to earthquake research: implementation of a Geochemical Geographic Information System for the Gargano site, Southern Italy. Nat Hazards 20 (2-3): 255-278.
Schoell M (1983) Genetic characterization of natural gases. AAPG Bulletin 67: 2225-2238.
Truesdell AH (1984) Chemical geothermometers for geothermal exploration. In: Henley RM, Truesdell AH, Barton PB Jr, Whitney JA (eds) Fluid-Mineral Equilibria in Hydrothermal Systems. Reviews in Economic Geology 1: 31-43
Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci Rev 21(1-3):295-305
Type
article
File(s)
No Thumbnail Available
Name
lavoro definitivo.pdf
Size
538.82 KB
Format
Adobe PDF
Checksum (MD5)
988e0b50d06d25ba81f3bdc394312ebf