Repository logo
  • English
  • Italiano
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Affiliation
  3. INGV
  4. Article published / in press
  5. Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)
 
  • Details

Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)

Author(s)
Seiler, Ruedi  
Kirchner, James W  
Krusic, Paul J  
Tognetti, Roberto  
Houlié, Nicolas  
Andronico, Daniele  
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia  
Cullotta, Sebastiano  
Egli, Markus  
D'Arrigo, Rosanne  
Cherubini, Paolo  
Language
English
Obiettivo Specifico
4V. Dinamica dei processi pre-eruttivi
Status
Published
JCR Journal
JCR Journal
Peer review journal
No
Journal
PLoS One  
Issue/vol(year)
/12 (2017)
Electronic ISSN
1932-6203
Pages (printed)
e0169297
Date Issued
2017
DOI
10.1371/journal.pone.0169297
URI
https://www.earth-prints.org/handle/2122/11517
Subjects
relation between NDVI and future volcanic eruptions
Subjects

Mt. Etna

Normalized Difference...

photosynthesis

eruption

Abstract
On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.
References
1. McNutt SR. Seismic monitoring and eruption forecasting of volcanoes: A review of the state-of-the-art
and case histories. Berlin Heidelberg: Springer-Verlag; 1996.
2. Battaglia M, Roberts C, Segall P. Magma intrusion beneath long valley caldera confirmed by temporal
changes in gravity. Science 1999; 285:2119–2122. PMID: 10497128
3. Williams-Jones G, Rymer H. Detecting volcanic eruption precursors: a new method using gravity and
deformation measurements. J Volcanol Geotherm Res 2002; 113:379–389.
4. Sherburn S, Scott B.J, Olsen J, Miller C. Monitoring seismic precursors to an eruption from the Auckland
volcanic field, New Zealand. New Zeal J Geol Geop 2007; 50(1):1–11.
5. Hooper A, Prata F, and Sigmundson F. Remote sensing of volcanic hazards and their precursors. Proceedings
of the IEEE 2012; 100(10):2908–2930.
6. Sicali S, Barberi G, Cocina O, Musumeci C, Patanè D. Volcanic unrest leading to the July-August
2001 lateral eruption at Mt. Etna: Seismological constraints. J Volcanol Geotherm Res 2015; 304:11–
23.
7. Sparks RSJ, Biggs J, Neuberg JW. Monitoring Volcanoes. Science 2012; 335:1310–1311. doi: 10.
1126/science.1219485 PMID: 22422969
8. Jong SM. Imaging spectrometry for monitoring tree damage caused by volcanic activity in the Long
Valley caldera, California. ITC Journal 1998;1–10.
9. McNutt SR, Rymer H, Stix J. Synthesis of volcano monitoring. In: Encyclopedia of volcanoes. Sigurdsson
H, et al., editors. San Diego: Academic Press; 2000. pp. 1167–1185.
10. Andronico D, Scollo S, Cristaldi A, Ferrari F. Monitoring the ash emission episodes at Mt. Etna: the 16
November 2006 case study. J Volcanol Geotherm Res 2009; 180:123–134.

11. Houlie´ N, Komorowski JC, de Michele M, Kasereka M, Ciraba H. Early detection of eruptive dykes
revealed by normalized difference vegetation index (NDVI) on Mt. Etna and Mt. Nyiragongo. Earth
Planet Sci Lett 2006; 246:231–240.
12. Gamon JA, Field CB, Goulden ML, Friffin KL, Hartley AE, Joel G, et al. Relationships between NDVI,
canopy structure, and photosynthesis in three Californian vegetation types. Ecological Application
1995; 5:28–41.
13. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA. Satellite-observed photosynthetic trends across boreal
North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 2005;
102:13521–13525. doi: 10.1073/pnas.0506179102 PMID: 16174745
14. Andronico D, Branca S, Calvari S, Burton M, Caltabiano T, Corsaro RA, et al. A multi-disciplinary
study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 2005;
67:314–330.
15. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, et al. Forecasting Etna eruptions by
real-time observation of volcanic gas composition. Geology 2007; 35:1115–1118.
16. Shinohara H. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev
Geophys 2008; 46:RG4005.
17. Bu¨ntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J. Growth/climate response shift
in a long subalpine spruce chronology. Trees 2006; 20:99–110.
18. Briffa K, Melvin TM, Osborn TJ, Hantemirov RM, Kirdyanov AV, Mazepa VS, et al. Reassessing the
evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest
Siberia. Quat Sci Rev 2013; 72:83–107.
19. Cherubini P, Gartner BL, Tognetti R, Bra¨ker OU, Schoch W, Innes J. Identification, measurement and
interpretation of tree rings in woody species from Mediterranean climates. Biol Rev Camb Philos Soc
2003; 78:119–148. PMID: 12620063
20. Gea-Izquierdo G, Cherubini P, Cañellas. Tree-rings reflect the impact of climate change on Quercus
ilex L. along a temperature gradient in Spain over the last 100 years. For Ecol Manage 2011; 262
(9):1807–1816.
21. Dobbertin M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a
review. Eur J For Res 2005; 124:319–333.
22. Fritts HC. Tree Rings and Climate. London: Academic Press Inc. Ltd; 1976.
23. Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to
environmental conditions: understanding the role of temperature in wood formation of trees. Physiol
Plant 2013; 147:46–54. doi: 10.1111/j.1399-3054.2012.01663.x PMID: 22680337
24. Ko¨ppen W. Die Klimate der Erde. Grundriss der Klimakunde. Berlin: Walter de Gruyter; 1923.
25. Walter H, Lieth H. Klimadiagramm-Weltatlas. Vienna: Gustav Fischer Verlag; 1960.
26. Bolle HJ, Eckardt M, Koslowsky D, Maselli F, Melia Miralles J, Menenti M, et al. Mediterranean land
surface processes assessed from space. Regional Climate Studies; vol. XXVIII. Springer Series;
2006.
27. Ma S, Baldocchi DD, Xu L, Hehn T. Inter-annual variability in carbon dioxide exchange of an oak/grass
savanna and open grassland in California. Agric For Meteorol 2007; 147:157–171.
28. Cotrufo MF, Alberti G, Inglima I, Marjanovic H, LeCain D, Zaldei A, et al. Decreased summer drought
affects plant productivity and soil carbon dynamics in a Mediterranean woodland. Biogeosciences
2011; 8:2729–2739.
29. Maselli F, Cherubini P, Chiesi M, Gilabert MA, Lombardi F, Moreno A, et al. Start of the dry season as
a main determinant of inter-annual Mediterranean forest production variations. Agric For Meteorol
2014; 194:197–206.
30. Bonneville A, Gouze P. Thermal survey of Mount Etna volcano from space. Geophys Res Lett 1992;
19:725–728.
31. Poli Marchese E, Grillo M. Primary succession on lava flows on Mt.Etna. In: Burga C.A., Klo¨ tzli F.,
Grabherr G. (Eds.), Gebirge der Erde.: Landschaft, Klima, Pflanzenwelt. Stuttgart: Ulmer; 2004. pp.
291–300.
32. Branca S, Coltelli M, De Beni E, Wijbrans J. Geological evolution of Mount Etna volcano (Italy) from
earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological
and stratigraphic data. Int J Earth Sci 2008; 97:135–152.
33. Burga C, Klo¨ tzli F. Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Stuttgart: Eugen Ulmer GmbH
& Co.; 2004.
34. Doglioni C, Innocenti F, Mariotti G. On the geodynamic origin of Mt. Etna. GNGTS—Atti del 17 Convegno
Nazionale, 2002.
35. Hermes K. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze
(Ko¨lner geographische Arbeiten 5). Universita¨ t Ko¨ ln: Geographisches Institut; 1955.
36. Ko¨rner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 1998;
115:445–459.
37. Certini G, Sanjurjo MJF, Corti G, Ugolini F. The contrasting effect of broom and pine on pedogenic processes
in volcanic soils (Mt. Etna, Italy). Geoderma 2001; 102:239–254.
38. Dazzi C. Environmental features and land use of Etna (Sicily—Italy). In: Arnalds O, Bartoli F, Buurman
P, Oskarsson H, Stoops G, Garcia-Rodeja E, editors. Soils of Volcanic Regions in Europe. Heidelberg:
Springer-Verlag Berlin; 2007.
39. Egli M, Mastrolonardo G, Seiler R, Raimondi S, Favilli F, Crimi V, et al. Charcoal and stable soil organic
matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt.Etna, Sicily.
Catena 2012; 88:14–26.
40. Allard P. Endogenous magma degassing and storage at Mount Etna. Geophys Res Lett 1997;
24:2219–2222.
41. Lulli L. Italian volcanic soils. In: ArnaldsO`
, Bartoli F, Buurman P,O`
skarsson H, Stoops G, Garcia-
Rodeja E, editors. Soils of volcanic regions in Europe. Berlin Heidelberg: Springer-Verlag; 2007.
pp. 51–67.
42. Egli M, Mirabella A, Nater M, Alioth L, Raimondi S. Clay minerals, oxyhydroxide formation, element
leaching and humus development in volcanic soils. Geoderma 2008; 143:101–114.
43. Maeda T, Takenaka H, Warkentin BP. Physical properties of allophane soils. Adv Agron 1977;
29:229–264.
44. Ga¨rtner H, Cherubini P, Fonti P, von Arx G, Schneider L, Nievergelt D, et al. A technical perspective in
modern tree-ring research—How to overcome dendroecological and wood anatomical challenges. J
Vis Exp 2015; 97:e52337.
45. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing. Vienna, Austria. URL: http://www.R-project.org/) (2015)
46. Wessel P. & Smith W.H.F. New, improved version of generic mapping tools released. Eos Trans.
Amer. Geophys. Union 79, 579 (1998).
47. Egli M, Alioth L, Mirabella A, Raimondi S, Nater M, Verel R. Effect of climate and vegetation on soil
organic carbon, humus fractions, allophanes, imogolite, kaolinite, and oxhzdroxides in volcanic soils of
Etna (Sicily). Soil Science 2007; 172:673–691.
48. Holmes RL. Computer-assisted quality control in tree ring dating and measurement. Tree-ring Bull
1983; 43:69–78.
49. Grissino-Mayer HD. Evaluating crossdating accuracy: A manual and tutorial for the computer program
Cofecha. Tree Ring Res 2001; 57(2):205–221.
50. Mitchell TD, Carter TR, Jones PD, Hulme M, New M. A comprehensive set of high-resolution grids of
monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–
2100). Working Paper 55. Norwich: Tyndall Centre for Climate Change Research; 2004.
51. Griggs C, DeGaetano A, Kuniholm P, Newton M. A regional high-frequency reconstruction of May-
June precipitation in the north Aegean from oak tree rings, A.D. 1089–1989. Int J Climatol 2007;
27:1075–1089.
52. Carrer M, Nola P, Motta R, Urbinati C. Contrasting tree-ring growth to climate responses of Abies alba
toward the southern limit of its distribution area. Oikos 2010; 119:1515–1525.
53. Lu¨deke MKB, Ramge PH, Kohlmaier GH. The use of satellite NDVI data for the validation of global
vegetation phenology models: application to the Frankfurt Biosphere Model. Ecol Model 1996;
91:255–270.
54. Bu¨ntgen U, Frank DC, Nievergelt D, Esper. Summer temperature variations in the European Alps, A.
D. 755–2004. J Clim 2005; 9:5606–5623.
55. Cook E, Kariukstis L. Methods of dendrochronology—Applications in the environmental sciences.
Dordrecht: Kluwer Academic Pubishers; 1990.
56. Garcı´a-Sua´rez AM, Butler CJ, Baille MG. Climate signal in tree-ring chronologies in a temperate climate:
A multi-species approach. Dendrochronologia 2009; 27:183–198.
57. Cai Q, Liu Y, Lei Y, Bao G, Sun. Reconstruction of the March-august PDSI since 1703 AD based on
tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese
loess Plateau. Clim Past 2014; 10:509–521.
58. Tome´ AR, Miranda PMA. Piecewise linear fitting and trend changing points of climate parameters.
Geophys Res Lett 2004; 31:L02207
59. Cook ER, Pederson N. Book- Chapter: Uncertainty, emergence and statistics in dendrochronology. In:
Dendroclimatology, Developments in Paleoenvironmental Research 2011; 11:77–112.
60. Kutner M, Nachtsheim C, Neter J, Li W. Applied linear statistical models. 5th ed. New York: McGraw-
Hill/Irwin; 2005.
61. O’Brian RM. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 2007;
41:673–690.
62. Todaro L, Andreu L, D’Alessandro CM, Gutie´rrez E, Cherubini P, and Saracino A. Response of Pinus
leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern
Italy). Biol Cons 2007; 137:507–519.
63. Griggs C, Pearson C, Manning SW, Lorentzen B. A 250-year annual precipitation reconstruction and
drought assessment for Cyprus from Pinus brutia Ten. tree-rings. Int J Climatol 2014; 34:2702–2714.
64. Graumlich LJ. Precipitation Variation in the Pacific Northwest (1675–1975) as Reconstructed from
Tree Rings. Ann Assoc Am Geogr 1987; 77:19–29.
65. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K. Forests of the Mediterranean region: gaps
in knowledge and research needs. For Ecol Manage 2000; 132:97–109.
66. Eckstein D, Aniol R. Dendroclimatological reconstruction of the summer temperatures for an alpine
region. Mitt Forstl Bundes-Vers.anst Wien 1981; 142:391–298.
67. Schweingruber FH. Fla¨chenhafte dendroklimatische Temperaturrekonstruktionen fu¨ r Europa. Naturwissenschaften
1987; 74:205–212.
68. Briffa K, Schweingruber FH, Jones PD, Osborn TJ, Harris IC, Shiyatov SG, et al. Trees tell of past climates:
but are they speaking less clearly today? Philosophical Transactions of the Royal Society of
London B Biological Sciences 1996; 353:65–73.
69. Hughes MK. Dendrochronology in climatology—the state of the art. Dendrochronologia 2002; 20(1–
2):95–116.
70. Leonelli G, Pelfini M, Morra di Cella U. Detecting climatic treelines in the Italian Alps: The influence of
geomorphological factors and human impacts. Phys Geogr 2009; 30(4):338–352.
71. Serre-Bachet F, Guiot J. Summer temperature changes from tree-rings in the mediterranean area during
the last 800 years. In: Abrupt Climatic Change, Evidence and Implications. NATO ASI Series C,
Mathematical and Physical Sciences, Vol. 216. The Netherlands: Reidel Publ. Co.; 1987. pp. 89–97.
72. Bu¨ntgen U, Frank DC, Neuenschwander T, Esper. Fading temperature sensitivity of Alpine tree growth
at its Mediterranean margin and associated effects on large-scale climate reconstructions. Clim
Change 2012; 114:651–666.
73. Campelo F, Nabais C, Freitas H, Gutie´rez E. Climatic significance of tree-ring width and intra-annual
density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 2006;
64:229–238.
74. Olivar J, Bogino S, Spiecker H, Bravo F. Climate impact on growth dynamic and intra-annual density
fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendrochronologia
2012; 30:35–47.
75. Touchan R, AkkemikU¨ , Malcolm KH, Erkan N. May-June precipiration reconstruction of southwestern
Anatolia, Turkey during the last 900 years from tree rings. Quat Res 2007; 68:196–202.
76. Hughes MK. Aegean tree-ring signature years explained, Tree-Ring Res 2001; 57:438–450.
77. Seim A, Bu¨ntgen U, Fonti P, Haska H, Herzig F, Tegel W, et al. Climate sensitivity of a millennium-long
pine chronology from Albania. Clim Res 2012; 51:217–228.
78. Navarro-Cerrillo RM, Sa´nchez-Salguero R, Manzanedo RD, Camarero JJ, Ferna´ndez Cancio A. Site
and age condition the growth responses to climate and drought of relict Pinus nigra subsp. salzmannii
populations in Southern Spain. Tree Ring Res 2014; 70:145–155.
79. Maselli F. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of
multiyear NDVI data. Remote Sens Environ 2004; 89:423–433.
80. AkkemikU¨ , D’Arrigo R, Cherubini P, Ko¨se N, Jacoby G. Tree-ring reconstructions of precipitation and
streamflow for north-western Turkey. Int J Climatol 2008; 28:173–183.
81. Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau A. Seasonal and annual variation of carbon
exchange in an evergreen Mediterranean forest in southern France. Glob Chang Biol 2008; 14:714–
725.
82. Aloui A. Recherches dendroclimatologiques en Kromirie (Tunesie). PhD. Thesis, Universite´ d’Aix-Marseille
III, France. 1982.
83. Tessier L. Dendroclimatologie et Ecologie de Pinus sylvestris L. et Quercus pubescens Willd. dans le
Sud-Est de la France. PhD. Thesis, Universite´ d’Aix-Marseille III. 1984.
84. Lebourgeois F, Levy G, Aussenac G, Clerc B, Willm F. Influence of soil drying on leaf water potential,
photosynthesis, stomatal conductance and growth in two black pine varieties. Ann For Sci 1998;
55:287–299.
85. Camarero JJ, Manzanedo RD, Sa´nchez-Salguero R, Navarro-Cerrillo. Growth response to climate
and drought change along an aridity gradient in the southernmost Pinus nigra relict forests. Ann For
Sci 2013; 70:769–780.
86. Tognetti R, Lombardi F, Lasserre B, Cherubini P, Marchetti M. Tree-ring stable isotopes reveal twentieth-
century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and
Chilean mountains. PLoS One 2014; 9:e113136. doi: 10.1371/journal.pone.0113136 PMID:
25398040
87. Reisser M. Soil analysis at Mount Etna to explain faster tree growth preceding a volcanic eruption.
Master Thesis. Department of Earth-System Sciences, University of Zurich. Switzerland; 2014.
88. Limm EB, Simonin KA, Bothman AG, Dawson TE. Foliar water uptake: a common water acquisition
strategy for plants of the redwood forest. Oecologia 2009; 161:449–459. doi: 10.1007/s00442-009-
1400-3 PMID: 19585154
89. Renault NL, Alvera B, Garcia-Ruiz JM. The snowmelt period in a Mediterranean high mountain catchment:
runoff and sediment transport. Cuadernos de Investigacion Geografica 2010; 36:99–108.
90. Touchan R, Anchukaitis KJ, Shishov VV, Fatih S, Attieh J, Ketmen M, et al. Spatial patterns of eastrn
Mediterranean climate influence on tree growth. Holocene 2014; 24(4):381–392.
91. Aubert M. Practical evaluation of steady heat discharge from dormant active volcanoes: case study of
Vulcarolo fissure (Mount Etna, Italy). J Volcanol Geotherm Res 1999; 92:413–429.
92. Ko¨se N, AkkemikU¨ , Dalfes N. Tree-ring reconstructions of May-June precipitation for western Anatolia.
Quat Res 2011; 75:438–450.
93. Ko¨se N, AkkemikU¨ , Gu¨ner HT, Dalfes HN, Frissino-Mayr HD,O¨ zeren MS, et al. an improved reconstruction
of May-June precipitation using tree-ring data from western Turkey and its links to volcanic
eruptions. Int J Biometeorol 2013; 57:691–701. doi: 10.1007/s00484-012-0595-x PMID: 23015281
94. Tardif J, Camarero JJ, Ribas M, Gutie´rrez E. Spatiotemporal variability in tree growth in the central
Pyrenees: Climatic and site influences. Ecol Monogr 2003; 73(2):241–257.
95. Christensen JH, Krishna Kumar K, Aldrian E, An SI, Cavalcani IFA, de Castro M, et al. Climate Phenomena
and their Relevance for Future Regional Climate Change. In: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Interngovernmental
Panel on Climate Change (Stocker TF, Qin D, Plattner GK, Tigor M, Allen SK,
Boschung J, et al. (Eds.)). Cambridge University Press, Cambridge, United Kingdom and New York,
USA. 2013.
96. Giammanco S, Gurrieri S, Valenza M. Anomalous soil CO2 degassing in relation to faults and eruptive
fissures on Mount Etna (Sicily, Italy). Bull Volcanol 1998; 60:252.
97. Liuzzo M, Di Muro A, Giudice G, Michon L, Ferrazzini V, Gurrieri S. New evidence of CO2 soil degassing
anomalies on Piton de la Fournaise volcano and the link with volcano tectonic structures. Geochem
Geophys Geosyst 2015; 16.
98. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R,
Martin D, Sabroux JC, Zettwoog P. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature
1991; 351: 387–391.
99. Watt SFL, Pyle DM, Mather TA, Day JA, Aiuppa A. The use of tree-rings and foliage as an archive of
volcanogenic cation deposition. Environ Pollut 2007; 184:48–61.
100. Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. Tree responses to rising
CO2 in field experiments: implications for the future forest. Plant Cell Environ 1999; 22:683–714.
101. Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A
meta-analytic review of the responses of photosynthesis, canopy properties and plant production to
rising CO2. New Phytol 2005; 165:351–372. doi: 10.1111/j.1469-8137.2004.01224.x PMID: 15720649
102. Tognetti R. Cherubini P. Innes JL. Comparative stem-growth rates of Mediterranean trees under background
and naturally enhanced ambient CO2 concentrations. New Phytol 2000; 146:59–74.
103. Saurer M, Cherubini P, Bonani G, Siegwolf R. Tracing carbon uptake from a natural CO2 spring into
tree rings: an isotope approach. Tree Physiology 2003; 23:997–1004. PMID: 12952786
104. Donders TH, Decuyper M, Beabien SE, Van Hoof TB, Cherubini P, Sass-Klaassen U. Tree rings as
biosensor to detect leakage of subsurface fossil CO2. Int J Greenh Gas Control 2013; 19:387–395.
105. Knapp PA, Soule´ PT, Grissino-Mayer HD. Detecting potential regional effects of increased atmospheric
CO2 on growth rates of western juniper. Global Change Biol 2001; 7:903–917.
106. Biondi F, Fessenden JE. Response of Lodgepole Pine growth to CO2 degassing at Mammoth Mountain,
California. Ecology 1999; 80(7):2420–2426.
107. Cook AC, Hainsworth LJ, Sorey ML, Evans WC, Southon JR. Radiocarbon studies of plant leaves and
tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO2 release. Chem Geol
2001; 177:117–131.
108. Ko¨rner C. Carbon limitation in trees. J Ecol 2003; 91:4–17.
109. Klein T, Bader MKF, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW et al. Growth and carbon relations
of mature Picea abies trees under 5 years of free-air CO2 enrichment. J Ecol 2016; 104:1720–
1733.
Type
article
File(s)
Loading...
Thumbnail Image
Name

Seileretal_PLoSONE_2017.pdf

Description
Research paper
Size

1.51 MB

Format

Adobe PDF

Checksum (MD5)

babe8b99339e4dda28282ca16687a8d2

rome library|catania library|milano library|napoli library|pisa library|palermo library
Explore By
  • Research Outputs
  • Researchers
  • Organizations
Info
  • Earth-Prints Open Archive Brochure
  • Earth-Prints Archive Policy
  • Why should you use Earth-prints?
Earth-prints working group
⚬Anna Grazia Chiodetti (Project Leader)
⚬Gabriele Ferrara (Technical and Editorial Assistant)
⚬Massimiliano Cascone
⚬Francesca Leone
⚬Salvatore Barba
⚬Emmanuel Baroux
⚬Roberto Basili
⚬Paolo Marco De Martini

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback