Options
Lithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquake
Author(s)
Language
English
Status
Published
Peer review journal
Yes
Title of the book
Issue/vol(year)
110, B06311
Publisher
American Geophysical Union
Pages (printed)
1-16
Issued date
2005
Alternative Location
Abstract
Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral
area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the
order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the
order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
References
Arca, S., V. Bonasia, F. Pingue, R. Scarpa, R. Gaulon, and J. C. Ruegg (1983), Ground movements and faulting mechanism associated to the November 23, 1980 southern Italy earthquake, Boll. Geod. Sci. Affini, 42, 137–147.
Bernard, P., A. Zollo, C. I. Trifu, and A. Herrero (1993), Details of the rupture kinematics and mechanism of the 1980 Irpinia earthquake: New results and remaining questions, Ann. Geofis., XXXVI, 71–80.
Bu¨rgmann, R., S. Ergintav, P. Segall, E. H. Hearn, S. McClusky, R. E. Reilinger, H. Woith, and J. Zschauj (2002), Time-dependent distributed
afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am., 92(1),126– 137.
Caporali, A., S. Martin, M. Massironi (2003), Avarage strain rate in the Italian crust inferred from a permanent GPS network- II. Strain rate versus seismicity and structural geology, Geophys. J. Int., 155(1), 254– 268, doi:10.1046/j.1365-246X.2003.02035.x.
Constable, S. C., R. L. Parker, and C. G. Constable (1987), Occam’s inversion: A pratical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289–300.
Cotecchia, V. (1986), Ground deformations and slope instability produced by the earthquake of 23 November 1980 in Campania and Basilicata,
Geol. Appl. Idrogeol., 21(5), 31– 100.
Dalla Via, G., G. De Natale, C. Troise, F. Pingue, F. Obrizzo, R. Riva, and R. Sabadini (2003), First evidence of post-seismic deformation in the central Mediterranean: Crustal viscoelastic relaxation in the area of the 1980 Irpinia earthquake (southern Italy), Geophys. J. Int., 154(3), F9– F14, doi:10.1046/ j.1365-246X.2003.02031.x.
deGroot-Hedlin, C., and S. Constable (1990), Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55(12), 1613– 1624.
De Natale, G. (1989), Inversion of ground deformation data for variable slip fault models, Software Eng. Workstations, 5, 140– 150.
Deng, J., M. Gurnis, H. Kanamori, E. Hauksson (1998), Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science, 282, 1689–1692.
Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297– 356.
Friederich, W., and J. Dalkolmo (1995), Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the
Green’s function in the frequency domain, Geoph. J. Int., 136, 537–550.
Giardini, D., A. Basili, and E. Boschi (1996), Applying the relative hypocentre location approach: where was the 1980 November 23 Irpinia earthquake?, Geophys. J. Int., 127, 605– 615.
Marone, C., C. H. Scholz, and R. Bilham (1991), On the mechanics of earthquake afterslip, J. Geophys. Res., 96, 8441–8452.
Mostardini, P., and S. Merlini (1986), Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale, Mem. Soc. Geol. Ital., 35, 177– 202.
Pantosti, D., and G. Valensise (1990), Faulting mechanism and complexity of the 23 November 1980, Campania-Lucania, earthquake, inferred from
surface observations, J. Geophys. Res., 95, 15, 319– 15,341.
Pantosti, D., and G. Valensise (1993), Source geometry and long-term behavior of the 1980, Irpinia earthquake fault based on field geologic
observations, Ann. Geofis., XXXVI, 41– 49.
Pantosti, D., G. D’addezio, and F. R. Cinti (1993), Paleoseismological evidence of repeated large earthquakes along the 1980 Irpinia earthquake fault, Ann. Geofis., XXXVI, 321– 330.
Phinney, R. A., and R. Burridge (1973), Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophys. J. R. Astron. Soc., 34, 451– 487.
Pingue, F., and G. De Natale (1993), Fault mechanism of the 40 seconds subevent of the 1980 Irpinia (southern Italy) earthquake from levelling data, Geophys. Res. Lett., 20(10), 911 – 914.
Pingue, F., G. De Natale, and P. Briole (1993), Modeling of the 1980 Irpinia earthquake source: constraints from geodetic data, Ann. Geofis., XXXVI, 27– 40.
Pollitz, F.F. (1997), Gravitational viscoelastic postseismic relaxation on a layered spherical Earth, J. Geophys. Res., 102, 17,921– 17,941.
Pollitz, F. F. (2003), Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215(1– 2), 89–104.
Pollitz, F. F., R. Bu¨rgmann, and P. Segall (1998), Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake, J. Geophys. Res., 103, 26,975– 26,992.
Pollitz, F. F., G. Peltzer, and R. Burgmann (2000), Mobility of continentall mantle:Evidence from postseismic geodetic observations following the 1992 Landers earthquake, J. Geophys. Res., 105, 8035–8054.
Pollitz, F. F., C. Wicks, and W. Tatcher (2001), Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake, Science, 293, 1814– 1818.
Ranalli, G., and D. C. Murphy (1987),Rheological stratification of the lithosphere, Tectonophy, 132, 281–295.
Riva, R. E. M. (2004), Crustal rheology and postseismic deformation: Modeling and application to the Apennines, Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands.
Riva, R. E. M., and L. L. A. Vermeersen (2002), Approximation method for hig-degree harmonics in normal mode modelling, Geophys. J. Int., 151(1), 309–313, doi:10.1046/j.1365-246X.2002.01754.x.
Sabadini, R., and L. L. A. Vermeersen (2004), Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth
Geophysics, Modern Approaches Geophys., vol. 30, Springer, New York.
Sabadini, R., G. Di Donato, L. L. A. Vermeesen, R. Devoti, V. Luceri, and G. Bianco (2002), Ice mass loss in Antarctica and stiff lower mantle
viscosity inferred from the long wavelength time dependent gravity field, Geophys. Res. Lett., 29(10), 1373, doi:10.1029/2001GL014016.
Troise, C., G. De Natale, F. Pingue, and S. M. Petrazzuoli (1998), Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy), Geophys. J. Int., 134(3), 809–817, doi:10.1046/j.1365 246x.1998.00610.x.
Wessel, P., and W. H. F. Smith (1990), Gridding with continuos curvature splines in tension, Geophysics, 55, 293– 305.
Wessel, P., and W. H. F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79(47), 579.
Westaway, R. (1992), Seismic moment summation for historical earthquakes in Italy: Tectonic implications, J. Geophys. Res., 97, 15,437–
15,464.
Bernard, P., A. Zollo, C. I. Trifu, and A. Herrero (1993), Details of the rupture kinematics and mechanism of the 1980 Irpinia earthquake: New results and remaining questions, Ann. Geofis., XXXVI, 71–80.
Bu¨rgmann, R., S. Ergintav, P. Segall, E. H. Hearn, S. McClusky, R. E. Reilinger, H. Woith, and J. Zschauj (2002), Time-dependent distributed
afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am., 92(1),126– 137.
Caporali, A., S. Martin, M. Massironi (2003), Avarage strain rate in the Italian crust inferred from a permanent GPS network- II. Strain rate versus seismicity and structural geology, Geophys. J. Int., 155(1), 254– 268, doi:10.1046/j.1365-246X.2003.02035.x.
Constable, S. C., R. L. Parker, and C. G. Constable (1987), Occam’s inversion: A pratical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289–300.
Cotecchia, V. (1986), Ground deformations and slope instability produced by the earthquake of 23 November 1980 in Campania and Basilicata,
Geol. Appl. Idrogeol., 21(5), 31– 100.
Dalla Via, G., G. De Natale, C. Troise, F. Pingue, F. Obrizzo, R. Riva, and R. Sabadini (2003), First evidence of post-seismic deformation in the central Mediterranean: Crustal viscoelastic relaxation in the area of the 1980 Irpinia earthquake (southern Italy), Geophys. J. Int., 154(3), F9– F14, doi:10.1046/ j.1365-246X.2003.02031.x.
deGroot-Hedlin, C., and S. Constable (1990), Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55(12), 1613– 1624.
De Natale, G. (1989), Inversion of ground deformation data for variable slip fault models, Software Eng. Workstations, 5, 140– 150.
Deng, J., M. Gurnis, H. Kanamori, E. Hauksson (1998), Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science, 282, 1689–1692.
Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297– 356.
Friederich, W., and J. Dalkolmo (1995), Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the
Green’s function in the frequency domain, Geoph. J. Int., 136, 537–550.
Giardini, D., A. Basili, and E. Boschi (1996), Applying the relative hypocentre location approach: where was the 1980 November 23 Irpinia earthquake?, Geophys. J. Int., 127, 605– 615.
Marone, C., C. H. Scholz, and R. Bilham (1991), On the mechanics of earthquake afterslip, J. Geophys. Res., 96, 8441–8452.
Mostardini, P., and S. Merlini (1986), Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale, Mem. Soc. Geol. Ital., 35, 177– 202.
Pantosti, D., and G. Valensise (1990), Faulting mechanism and complexity of the 23 November 1980, Campania-Lucania, earthquake, inferred from
surface observations, J. Geophys. Res., 95, 15, 319– 15,341.
Pantosti, D., and G. Valensise (1993), Source geometry and long-term behavior of the 1980, Irpinia earthquake fault based on field geologic
observations, Ann. Geofis., XXXVI, 41– 49.
Pantosti, D., G. D’addezio, and F. R. Cinti (1993), Paleoseismological evidence of repeated large earthquakes along the 1980 Irpinia earthquake fault, Ann. Geofis., XXXVI, 321– 330.
Phinney, R. A., and R. Burridge (1973), Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophys. J. R. Astron. Soc., 34, 451– 487.
Pingue, F., and G. De Natale (1993), Fault mechanism of the 40 seconds subevent of the 1980 Irpinia (southern Italy) earthquake from levelling data, Geophys. Res. Lett., 20(10), 911 – 914.
Pingue, F., G. De Natale, and P. Briole (1993), Modeling of the 1980 Irpinia earthquake source: constraints from geodetic data, Ann. Geofis., XXXVI, 27– 40.
Pollitz, F.F. (1997), Gravitational viscoelastic postseismic relaxation on a layered spherical Earth, J. Geophys. Res., 102, 17,921– 17,941.
Pollitz, F. F. (2003), Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215(1– 2), 89–104.
Pollitz, F. F., R. Bu¨rgmann, and P. Segall (1998), Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake, J. Geophys. Res., 103, 26,975– 26,992.
Pollitz, F. F., G. Peltzer, and R. Burgmann (2000), Mobility of continentall mantle:Evidence from postseismic geodetic observations following the 1992 Landers earthquake, J. Geophys. Res., 105, 8035–8054.
Pollitz, F. F., C. Wicks, and W. Tatcher (2001), Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake, Science, 293, 1814– 1818.
Ranalli, G., and D. C. Murphy (1987),Rheological stratification of the lithosphere, Tectonophy, 132, 281–295.
Riva, R. E. M. (2004), Crustal rheology and postseismic deformation: Modeling and application to the Apennines, Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands.
Riva, R. E. M., and L. L. A. Vermeersen (2002), Approximation method for hig-degree harmonics in normal mode modelling, Geophys. J. Int., 151(1), 309–313, doi:10.1046/j.1365-246X.2002.01754.x.
Sabadini, R., and L. L. A. Vermeersen (2004), Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth
Geophysics, Modern Approaches Geophys., vol. 30, Springer, New York.
Sabadini, R., G. Di Donato, L. L. A. Vermeesen, R. Devoti, V. Luceri, and G. Bianco (2002), Ice mass loss in Antarctica and stiff lower mantle
viscosity inferred from the long wavelength time dependent gravity field, Geophys. Res. Lett., 29(10), 1373, doi:10.1029/2001GL014016.
Troise, C., G. De Natale, F. Pingue, and S. M. Petrazzuoli (1998), Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy), Geophys. J. Int., 134(3), 809–817, doi:10.1046/j.1365 246x.1998.00610.x.
Wessel, P., and W. H. F. Smith (1990), Gridding with continuos curvature splines in tension, Geophysics, 55, 293– 305.
Wessel, P., and W. H. F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79(47), 579.
Westaway, R. (1992), Seismic moment summation for historical earthquakes in Italy: Tectonic implications, J. Geophys. Res., 97, 15,437–
15,464.
Type
article
File(s)
No Thumbnail Available
Name
Dalla Via.pdf
Size
609 KB
Format
Adobe PDF
Checksum (MD5)
e443d39d4c518ea8a519a34af59ba0cb
No Thumbnail Available
Name
agu.htm
Size
419 B
Format
HTML
Checksum (MD5)
f290004ea101c6413d6452bd8bfde571