Options
Climatic trends of the equatorial undercurrent: A backup mechanism for sustaining the equatorial Pacific production
Author(s)
Language
English
Obiettivo Specifico
4A. Clima e Oceani
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/121 (2013)
ISSN
0924-7963
Publisher
Elsevier Science Limited
Pages (printed)
11-23
Issued date
July 2013
Abstract
The Equatorial Undercurrent (EUC) is the major source of iron to the equatorial Pacific and it is sensitive to
climatic changes as other components of the tropical Pacific. This work proposes a methodology based on a
Lagrangian approach aimed at understanding the changes in the transport of iron rich waters to the EUC in
a future climate change scenario, using climate model data from an Earth system model. A selected set of
regions from the northern and southern extra-equatorial Pacific has been chosen. These regions are charac-
terized by the presence of iron sources from continental shelf processes like the Papua New Guinea region
and atmospheric deposition like the northern subtropical gyre. The trajectories that reach the EUC during
the 20th and the 21st century departing from these areas have been analyzed using a set of statistics designed
to determine variations in the amount of transport and in the travel times of the water masses. The transport
of waters to the EUC from the north Pacific subtropical gyre and from the Bismarck Sea is projected to
increase during the 21st century. The increase is particularly significant for water masses from the northern
subtropical gyre, with travel times lower than 10 years in the second half of the 21st century. This increased
interaction between the extra-tropics and the EUC may bring additional iron-rich waters in the high-nutrient
low-chlorophyll region of the equatorial Pacific compatibly with the significant increase of the simulated net
primary production found in the biogeochemical model, thus partly offsetting the anticipated decrease of
production implied by the surface warming
climatic changes as other components of the tropical Pacific. This work proposes a methodology based on a
Lagrangian approach aimed at understanding the changes in the transport of iron rich waters to the EUC in
a future climate change scenario, using climate model data from an Earth system model. A selected set of
regions from the northern and southern extra-equatorial Pacific has been chosen. These regions are charac-
terized by the presence of iron sources from continental shelf processes like the Papua New Guinea region
and atmospheric deposition like the northern subtropical gyre. The trajectories that reach the EUC during
the 20th and the 21st century departing from these areas have been analyzed using a set of statistics designed
to determine variations in the amount of transport and in the travel times of the water masses. The transport
of waters to the EUC from the north Pacific subtropical gyre and from the Bismarck Sea is projected to
increase during the 21st century. The increase is particularly significant for water masses from the northern
subtropical gyre, with travel times lower than 10 years in the second half of the 21st century. This increased
interaction between the extra-tropics and the EUC may bring additional iron-rich waters in the high-nutrient
low-chlorophyll region of the equatorial Pacific compatibly with the significant increase of the simulated net
primary production found in the biogeochemical model, thus partly offsetting the anticipated decrease of
production implied by the surface warming
Sponsors
This work was funded by the Centro Euro-Mediterraneo per i Cambiamenti Climatici through the GEMINA project.
References
AchutaRao, K., Sperber, K.R., 2006. ENSO simulation in coupled ocean–atmosphere
models: are the current models better? Clim. Dyn. 27 (1), 1–15.
Blanke, B., Raynaud, S., 1997. Kinematics of the Pacific Equatorial Undercurrent: An
Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr. 27 (6),
1038–1053.
Butt, J., Lindstrom, E., 1994. Currents off the east coast of New Ireland, Papua New
Guinea, and their relevance to the regional undercurrents in the western equatorialPacic Ocean. J. Geophys. Res. 99 (12), 12503-12514.
Capotondi, A., Alexander, M.A., Deser, C., McPhaden, M.J., 2005. Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Clim. 18 (18), 3739–3758.
Christian, J.R., Verschell, M.A., Murtugudde, R., Busalacchi, A.J., McClain, C.R., 2002.
Biogeochemical modelling of the tropical Pacific Ocean. II: iron biogeochemistry.
Deep-Sea Res. Part II 49, 545–565.
Coale, K.H., Fitzwater, S.E., Gordon, R.M., Johnson, K.S., Barber, R.T., 1996. Control
of community growth and export production by upwelled iron in the equatorial
Pacific ocean. Nature 379, 621–624.
DiNezio, P.N., Clement, A.C., Vecchi, G.A., Soden, B.J., Kirtman, B.P., Lee, S.-K., 2009.
Climate response of the equatorial Pacific to global warming. J. Clim. 22 (18),
4873–4892.
DiNezio, P., Clement, A., Vecchi, G., 2010. Reconciling differing views of tropical pacific
climate change. EOS Trans. Am. Geophys. Union 91 (16) (URL http://dx.doi.org/10.
1029/2010EO160001).
Fine, R., Lukas, R., Bingham, F.M., Warner, M.J., Gammon, R., 1994. The western equato-
rial Pacific: A water mass crossroads. J. Geophys. Res. 99 (25), 20063–20080.
Fogli, P.G., Manzini, E., Vichi, M., Alessandri, A., L.P., Gualdi, S., Scoccimarro, E., Masina,
S., Navarra, A., 2009. INGV-CMCC carbon: A carbon cycle Earth system model. Tech.
Rep. RP0061. CMCC.
Ganachaud, A.A., Sen Gupta, J.N., Brown, K., Evans, K., Maes, C., Muir, L.C., Graham, S.,
2013. Projected changes in the tropical Pacific Ocean of importance to tuna fisher-
ies. Clim. Chang. http://dx.doi.org/10.1007/s10584-012-0631-1 (in press).
Goodman, P.J., Hazeleger, W., de Vries, P., Cane, M., 2005. Pathways into the Pacific Equa
torial Undercurrent: A trajectory analysis*. J. Phys. Oceanogr. 35 (11), 2134–2151
(2011/01/29).
Grenier, M., Cravatte, S., Blanke, B., Menkes, C., Koch-Larrouy, A., Durand, F., Melet, A.,
Jeandel, C., 2011. From the western boundary currents to the Pacific Equatorial
Undercurrent: modeled pathways and water mass evolutions. J. Geophys. Res.
116 (C12044), 2011.
Gu, D., Philander, S., 1997. Interdecadal climate fluctuations that depend on exchanges
between the tropics and extratropics. Science 275 (5301), 805.
Hayes, S.P., Mangum, L.J., Picaut, J., Sumi, A., Takeuchi, K., 1991. TOGA-TAO: A moored array
for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc. 72,
339–347. http://dx.doi.org/10.1175/1520-0477(1991)072b0339:TTAMAF>2.0.CO;2.
Hockney, R.W., Eastwood, J.W., 1988. Computer Simulations Using Particles. Taylor &
Francis, New York.
Huang, B.Y., Liu, Z.Y., 1999. Pacific subtropical–tropical thermocline water exchange in
the National Centers for Enviromental Prediction ocean model. J. Geophys. Res.
Oceans 104 (12), 3470–3487.
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J.,
Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss,
P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global
iron connections between desert dust, ocean biogeochemistry, and climate.
Science 308 (5718), 67–71. http://dx.doi.org/10.1126/science.1105959.
Johnson, G.C., Sloyan, B.M., Kessler, W.S., MCTaggart, K.E., 2002. Direct measurements
of the upper ocean currents and water properties across the tropical Pacific during
1990s. Prog. Oceanogr. 52, 31–61.
Karnauskas, K.B., Cohen, A.L., 2012. Equatorial refuge amid tropical warming. Nat. Clim.
Chang. 2 (7), 530–534. http://dx.doi.org/10.1038/nclimate1499.
Kessler, W., 2006. The circulation of the eastern tropical Pacific: A review. Prog.
Oceanogr. 69 (2–4), 181–217.
Lowe, J.A., Hewitt, C.D., van Vuuren, D.P., Johns, T.C., Stehfest, E., Royer, J.F., van der
Linden, P.J., 2009. New study for climate modeling, analyses, and scenarios. EOS
Trans. Am. Geophys. Union 90 (21). http://dx.doi.org/10.1029/2009EO210001.
Lukas, R., Firing, E., 1984. The geostrophic balance of the Pacific Equatorial Undercurrent.
Deep-Sea Res. 31, 61–66.
Mackey, D.J., O'sullivan, J.E., Watson, R.J., 2002. Iron in the western Pacific: A riverine or
hydrothermal source for iron in the equatorial undercurrent? Deep-Sea Res. Part II
49, 877–893.
Madec, G., Imbard, M., 1996. A global ocean mesh to overcome the North Pole singular-
ity. Clim. Dyn. 12, 381–388.
Madec, G., Delecluse, P., Imbard, M., Levy, C., 1999. OPA8.1 ocean general circulation
model reference manual. Notes Du Pole De Modelisation. IPSL, France (February,
http://www.lodyc.jussieu.fr/opa. URL http://www.lodyc.jussieu.fr/opa).
McPhaden, M.J., Zhang, D., 2004. Pacific ocean circulation rebounds. Geophys. Res. Lett.
31 (18). http://dx.doi.org/10.1029/2004GL020727.
Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F., Stouffer, R.J.,
Taylor, K.E., 2007. The WCRP CMIP3 multimodel dataset. Bull. Am. Meteorol. Soc.
88, 1383–1394. http://dx.doi.org/10.1175/BAMS-88-9-1383.
Moore, J.K., Braucher, O., 2008. Sedimentary and mineral dust sources of dissolve iron
to the world ocean. Biogeosciences 5, 631–656.
Nakicenovic, N., Swart, R., 2000. Special report on emissions scenarios. A Special Report
of Working Group III of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK (July).
Pennington, J., Mahoney, K., Kuwahara, V., Kolber, D., Calienes, R., Chavez, F., 2006.
Primary production in the eastern tropical pacific: A review. Prog. Oceanogr. 69,
285317.
Rodgers, K.B., Blanke, B., Madec, G., Aumont, O., Ciais, P., Dutay, J.C., 2003. Extratropical sources of equatorial pacific upwelling in an OGCM. Geophys. Res. Lett. 30 (2).
http://dx.doi.org/10.1029/2002GL016003 (01).
Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear,
R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer, R., 2004. Response
of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, 3003.
Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J.N., Muir, L., 2012. Drivers of the
projectedchangestothepacificoceanequatorialcirculation.Geophys.Res.Lett.
models: are the current models better? Clim. Dyn. 27 (1), 1–15.
Blanke, B., Raynaud, S., 1997. Kinematics of the Pacific Equatorial Undercurrent: An
Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr. 27 (6),
1038–1053.
Butt, J., Lindstrom, E., 1994. Currents off the east coast of New Ireland, Papua New
Guinea, and their relevance to the regional undercurrents in the western equatorialPacic Ocean. J. Geophys. Res. 99 (12), 12503-12514.
Capotondi, A., Alexander, M.A., Deser, C., McPhaden, M.J., 2005. Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Clim. 18 (18), 3739–3758.
Christian, J.R., Verschell, M.A., Murtugudde, R., Busalacchi, A.J., McClain, C.R., 2002.
Biogeochemical modelling of the tropical Pacific Ocean. II: iron biogeochemistry.
Deep-Sea Res. Part II 49, 545–565.
Coale, K.H., Fitzwater, S.E., Gordon, R.M., Johnson, K.S., Barber, R.T., 1996. Control
of community growth and export production by upwelled iron in the equatorial
Pacific ocean. Nature 379, 621–624.
DiNezio, P.N., Clement, A.C., Vecchi, G.A., Soden, B.J., Kirtman, B.P., Lee, S.-K., 2009.
Climate response of the equatorial Pacific to global warming. J. Clim. 22 (18),
4873–4892.
DiNezio, P., Clement, A., Vecchi, G., 2010. Reconciling differing views of tropical pacific
climate change. EOS Trans. Am. Geophys. Union 91 (16) (URL http://dx.doi.org/10.
1029/2010EO160001).
Fine, R., Lukas, R., Bingham, F.M., Warner, M.J., Gammon, R., 1994. The western equato-
rial Pacific: A water mass crossroads. J. Geophys. Res. 99 (25), 20063–20080.
Fogli, P.G., Manzini, E., Vichi, M., Alessandri, A., L.P., Gualdi, S., Scoccimarro, E., Masina,
S., Navarra, A., 2009. INGV-CMCC carbon: A carbon cycle Earth system model. Tech.
Rep. RP0061. CMCC.
Ganachaud, A.A., Sen Gupta, J.N., Brown, K., Evans, K., Maes, C., Muir, L.C., Graham, S.,
2013. Projected changes in the tropical Pacific Ocean of importance to tuna fisher-
ies. Clim. Chang. http://dx.doi.org/10.1007/s10584-012-0631-1 (in press).
Goodman, P.J., Hazeleger, W., de Vries, P., Cane, M., 2005. Pathways into the Pacific Equa
torial Undercurrent: A trajectory analysis*. J. Phys. Oceanogr. 35 (11), 2134–2151
(2011/01/29).
Grenier, M., Cravatte, S., Blanke, B., Menkes, C., Koch-Larrouy, A., Durand, F., Melet, A.,
Jeandel, C., 2011. From the western boundary currents to the Pacific Equatorial
Undercurrent: modeled pathways and water mass evolutions. J. Geophys. Res.
116 (C12044), 2011.
Gu, D., Philander, S., 1997. Interdecadal climate fluctuations that depend on exchanges
between the tropics and extratropics. Science 275 (5301), 805.
Hayes, S.P., Mangum, L.J., Picaut, J., Sumi, A., Takeuchi, K., 1991. TOGA-TAO: A moored array
for real-time measurements in the tropical Pacific Ocean. Bull. Am. Meteorol. Soc. 72,
339–347. http://dx.doi.org/10.1175/1520-0477(1991)072b0339:TTAMAF>2.0.CO;2.
Hockney, R.W., Eastwood, J.W., 1988. Computer Simulations Using Particles. Taylor &
Francis, New York.
Huang, B.Y., Liu, Z.Y., 1999. Pacific subtropical–tropical thermocline water exchange in
the National Centers for Enviromental Prediction ocean model. J. Geophys. Res.
Oceans 104 (12), 3470–3487.
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J.,
Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss,
P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global
iron connections between desert dust, ocean biogeochemistry, and climate.
Science 308 (5718), 67–71. http://dx.doi.org/10.1126/science.1105959.
Johnson, G.C., Sloyan, B.M., Kessler, W.S., MCTaggart, K.E., 2002. Direct measurements
of the upper ocean currents and water properties across the tropical Pacific during
1990s. Prog. Oceanogr. 52, 31–61.
Karnauskas, K.B., Cohen, A.L., 2012. Equatorial refuge amid tropical warming. Nat. Clim.
Chang. 2 (7), 530–534. http://dx.doi.org/10.1038/nclimate1499.
Kessler, W., 2006. The circulation of the eastern tropical Pacific: A review. Prog.
Oceanogr. 69 (2–4), 181–217.
Lowe, J.A., Hewitt, C.D., van Vuuren, D.P., Johns, T.C., Stehfest, E., Royer, J.F., van der
Linden, P.J., 2009. New study for climate modeling, analyses, and scenarios. EOS
Trans. Am. Geophys. Union 90 (21). http://dx.doi.org/10.1029/2009EO210001.
Lukas, R., Firing, E., 1984. The geostrophic balance of the Pacific Equatorial Undercurrent.
Deep-Sea Res. 31, 61–66.
Mackey, D.J., O'sullivan, J.E., Watson, R.J., 2002. Iron in the western Pacific: A riverine or
hydrothermal source for iron in the equatorial undercurrent? Deep-Sea Res. Part II
49, 877–893.
Madec, G., Imbard, M., 1996. A global ocean mesh to overcome the North Pole singular-
ity. Clim. Dyn. 12, 381–388.
Madec, G., Delecluse, P., Imbard, M., Levy, C., 1999. OPA8.1 ocean general circulation
model reference manual. Notes Du Pole De Modelisation. IPSL, France (February,
http://www.lodyc.jussieu.fr/opa. URL http://www.lodyc.jussieu.fr/opa).
McPhaden, M.J., Zhang, D., 2004. Pacific ocean circulation rebounds. Geophys. Res. Lett.
31 (18). http://dx.doi.org/10.1029/2004GL020727.
Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F., Stouffer, R.J.,
Taylor, K.E., 2007. The WCRP CMIP3 multimodel dataset. Bull. Am. Meteorol. Soc.
88, 1383–1394. http://dx.doi.org/10.1175/BAMS-88-9-1383.
Moore, J.K., Braucher, O., 2008. Sedimentary and mineral dust sources of dissolve iron
to the world ocean. Biogeosciences 5, 631–656.
Nakicenovic, N., Swart, R., 2000. Special report on emissions scenarios. A Special Report
of Working Group III of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK (July).
Pennington, J., Mahoney, K., Kuwahara, V., Kolber, D., Calienes, R., Chavez, F., 2006.
Primary production in the eastern tropical pacific: A review. Prog. Oceanogr. 69,
285317.
Rodgers, K.B., Blanke, B., Madec, G., Aumont, O., Ciais, P., Dutay, J.C., 2003. Extratropical sources of equatorial pacific upwelling in an OGCM. Geophys. Res. Lett. 30 (2).
http://dx.doi.org/10.1029/2002GL016003 (01).
Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear,
R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A., Stouffer, R., 2004. Response
of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, 3003.
Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J.N., Muir, L., 2012. Drivers of the
projectedchangestothepacificoceanequatorialcirculation.Geophys.Res.Lett.
Type
article
File(s)
No Thumbnail Available
Name
ruggio_et_al_2013.pdf
Description
main article
Size
2.29 MB
Format
Adobe PDF
Checksum (MD5)
268bd45aadbd71460024681dc696b769