Options
Ambient Vibrations of Age-old Masonry Towers: Results of Long-term Dynamic Monitoring in the Historic Centre of Lucca
Author(s)
Language
English
Obiettivo Specifico
5T. Sismologia, geofisica e geologia per l'ingegneria sismica
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
1/15 (2021)
Publisher
Taylor & Francis
Pages (printed)
5-21
Issued date
January 2021
Subjects
seismology for engineering
Abstract
The paper presents the results of an ambient vibration monitoring campaign conducted on the so-called “Clock Tower” (Torre delle Ore), one of the best known and most visited monuments in the historic centre of Lucca. The vibrations of the tower were continuously monitored from November 2017 to March 2018 using high-sensitivity instrumentation. In particular, four seismic stations provided by the Istituto Nazionale di Geofisica e Vulcanologia and two three-axial accelerometers developed by AGI S.r.l., spin-off of the National Institute for Astrophysics, were installed on the tower. The measured vibration level was generally very low, since the structure lies in the middle of a limited traffic area. Nevertheless, the availability of two different types of highly sensitive and accurate instruments allowed the authors to follow the dynamic behaviour of the tower during the entire monitoring period and has moreover provided cross-validation of the results.
Sponsors
This research has been partially supported by the Fondazione Cassa di Risparmio di Lucca (TITANIO project, 2016-2018) and the Region of Tuscany and MIUR (MOSCARDO project 2016-2018, FAR-FAS 2014). These supports are gratefully acknowledged.
References
1. R.M. Azzara, G. De Roeck, M. Girardi, C. Padovani, D. Pellegrini, E. Reynders. The influence of environmental parameters on the dynamic of the San Frediano bell tower in Lucca, Engineering Structures, 156, 175-187 (2018a).
2. R.M. Azzara, M. Girardi, C. Padovani, D. Pellegrini. Experimental and numerical investigations on the seismic behaviour of the San Frediano bell tower in Lucca, Annals of Geophysics, 61, doi: 10.4401/ag-8025, (2018b).
3. R.M. Azzara, A. De Falco, M. Girardi, D. Pellegrini. Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis, Annals of Geophysics, 60, 4, 2017, S0441, doi: 10.4401/ag-7159 (2017)
4. S. Baraccani, M. Palermo, R.M. Azzara, G. Gasparini, S. Silvestri, T. Trombetti, Structural interpretation of data from static and dynamic structural health monitoring of monumental buildings, Key Engineering Materials, 747, 431-439 (2017).
5. P. Barsocchi, P. Cassarà, F. Mavilia, D. Pellegrini, Sensing a city’s state of health: Structural Monitoring System by Internet-of-Things wireless sensing devices, IEEE Consumers Electronics Magazine, 7(2), 8287063, 22-31 (2018).
6. M.L. Beconcini. Il tempo dei lucchesi: la torre delle ore e il suo orologio. Maria Pacini Fazzi Editore. ISBN: 978-88-6550-565-6, (2017).
7. G. Bongiovanni, G. Buffarini, P. Clemente, D. Rinaldis, D. Saetta. Dynamic characteristics of the Amphitheatrum Flavium northern wall from traffic-induced vibrations, Annals of Geophysics, 60, 4, 2017, S0439, doi: 10.4401/ag-7178 (2017).
8. R. Brincker, C. Ventura. Introduction to Operational Modal analysis, Wiley (2015).
9. Cabboi, A.; Gentile, C.; Saisi, A. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials, 156, 252–265 (2017).
10. M. Celebi, T. Kashima, S.F. Ghaharic, S. Koyama, E. Taciroğlu. Before and after retrofit behavior and performance of a 55-story tall building inferred from distant earthquake and ambient vibration data. Earthquake Spectra.33(4), 1599-1626. (2017).
11. S. Chiostrini, F. Lancieri, A. Marradi, M. Nocentini, A. Vignoli, Numerical evaluation and experimental measurements of traffic-induced vibrations, Transactions on Modelling and Simulation vol 10, WIT Press, ISSN 1743-355X (1995).
12. A. D’Alessandro et al. Real-time urban seismic network and structural monitoring by means of accelerometric sensors: Application to the historic buildings of Catania (Italy). IEEE International Conference on environmental Engineering EE2108. Proceedings. p. 1-5. (2018).
13. J. Díaz , M. Ruiz , P.S. Sánchez-Pastor, P. Romero. Urban Seismology: on the origin of earth vibrations within a city, www.nature.com/scientificreports, DOI:10.1038/s41598-017-15499-y (2017)
14. S.W. Doebling, C.R. Farrar, M.B. Prime, D. Shevitz. Damage Identification abd Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory, New Mexico, NM, pp.132 (1996).
15. A. Erkal. Transmission of Traffic-induced Vibrations on and around the Minaret of Little Hagia Sophia. International Journal of Architectural Heritage, 11(3), 349–362 (2017).
16. M.R. Gallipoli et al. Empirical estimates of dynamic parameters on a large set of European buildings. Bulletin of Earthquake Engineering. 8:593–607 DOI 10.1007/s10518-009-9133-6 (2010)
17. C. Gentile, A. Saisi. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials, 21(6), 1311-1321,(2007).
18. M. Girardi, C. Padovani, D. Pellegrini, Effects of the stress field on the dynamic properties of masonry bell towers. AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 3, 216-229 (2017).
19. M. Girardi, C. Padovani, D. Pellegrini, L. Robol. A model updating procedure to enhance structural analysis in the FE code NOSA-ITACA. Journal of Perfomance of Constructed Facilities, in press., arXiv:1902.03949 [cs.CE], 2019.
20. D.N. Green, I.D. Bastow, B. Dashwood, S.E.J. Nippress. Characterizing Broadband Seismic Noise in Central London. Seismological Research Letters, 88 (1): 113-124 (2016).
21. L. Iafolla et al. OS-IS a new method for the sea waves monitoring, MTS/IEEE OCEANS 2015. Discovering Sustainable Ocean Energy for a New World. Genova, 17 September 2015, Article number 7271432.
22. Y. Kaya, E. Safak. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bullettin of Earthquake Engineering. 13:917–934 (2015).
23. A. Kita, N. Cavalagli, F. Ubertini. Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mechanical Systems and Signal Processing, 120, 180-202 (2019).
24. G. Lacanna, M. Ripepe, E. Marchetti, M. Coli, C.A. Garzonio. Dynamic response of the Baptistery of San Giovanni in Florence, Italy, based on ambient vibration test. Journal of . Cultural Heritage, 20, 632–640 (2016).
25. G. Lacanna, M. Ripepe, E. Marchetti,R. Genco, E. Marchetti. Full structural dynamic response from ambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry. NDT and E International, 102, 9–15, (2019)
26. F. Lorenzoni, M. Caldon, F. da Porto, C. Modena, T. Aoki. Post-earthquake controls and damage detection through structural health monitoring: applications in l’Aquila. Journal of Civil Structural health Monitoring. 8(2), 217-236 (2018).
27. N.M.M. Maia, J.M.M. Silva. Theoretical and Experimental Modal Analysis. Research Studies Press Ltd.
28. M.G. Masciotta, L. F. Ramos, P.B. Luorenço. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of . Cultural Heritage, 27, 36–47 (2017).
29. T.J. Matarazzo, P. Santi, S. N. Pakzad, K. Carter, C. Ratti, B. Moaveni, C. Osgood, N.Jacob. Crowdsensing Framework for Monitoring Bridge Vibrations Using Moving Smartphones. Proceedings of the IEEE. 106 (4), April 2018, Pages 577-593.
30. A. Pau, F. Vestroni. Vibration analysis and dynamic characterization of the Colosseum, Structural Control and Health Monitoring. 15:1105–1121, DOI: 10.1002/stc.253 (2008).
31. B. Peeters, B., G. De Roeck. Reference-based stochastic subspace identification for output-only modal analysis, Mech Syst Signal Process;13(6):855–78 (1999).
32. D. Pellegrini, TruDI software - Version 2.0 - A matlab code for structural dynamic identification, 2019.
33. D. Pellegrini, M. Girardi., C. Padovani, R.M. Azzara. A new numerical procedure for assessing the dynamic behaviour of ancient masonry towers. In: Papadrakakis M. and Fragiadakis M. (eds), COMPDYN 2017, 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Proceedings (2017).
34. A. Pierdicca, F. Clementi, D. Isidori, E. Concettoni, C. Cristalli, S. Lenci, Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network, International Journal of Masonry Research and Innovation 1 (1), 74-98, 2016.
35. G.A. Prieto, J.F. Lawrence, A.I. Chung, M.D. Kohler .Impulse Response of Civil Structures from Ambient Noise Analysis, Bullettin of Seismological Society of America, 100, 5A, 2322–2328, doi: 10.1785/0120090285 (2010).
36. L.F. Ramos, L. Marques, P.B. Lourenco, G. De Roeck, A. Campos-Costa. Monitoring historic masonry structures with operational modal analysis: two case studies, Mechanical Systems and Signal Processing. 24: 1291–1305, (2010).
37. E. Reynders, K. Maes, G. Lombaert, G. De Roeck. Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications. Mech. Syst. Signal Process, 66-67:13-30 (2016).
38. Shih C.Y. et al. Complex mode indication function and its applications to spatial domain parameter estimation. Mech. Syst. Signal Process, 2(4): 367-377 (1988).
39. J.R. R. Ritter, S.F. Balan, K.P. Bonjer, T. Diehl, T. Forbriger, G. Mărmureanu, F. Wenzel, W.Wirth, Broadband urban seismology in the Bucharest metropolitan area, Seismological. Research Letters, 76, 574–580 (2005).
40. I. Roselli, V. Fioriti, I. Bellagamba, M. Mongelli, A. Tatì, M. Barbera, M. Magnani Cianetti, G. De Canio. Urban transport vibrations and cultural heritage sites in Rome: the cases of the temple of Minerva amd the catacomb of Priscilla. WIT Transactions on Ecology and the Environment, 223, 335-343 (2017).
41. M. Todorovska. Soil-Structure System Identification of Millikan Library North–South Response during Four Earthquakes (1970–2002): What Caused the Observed Wandering of the System Frequencies? Bulletin of the Seismological Society of America, 99(2A), 626–635, (2009).
42. Trifunac, M.D. Wind and microtremor induced vibrations of a twenty-two story steel frame building. Sc. Rep. of Earthquake Engineering Research Laboratory of California Institute of Techonology, Pasadena, California, USA, pp. 52 (1970).
43. F. Ubertini et al. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing. 82(1), pp.307-322, (2017).
44. M. Wyjadlowski. Methodology of dynamic monitoring of structures in the vivinity of hydrotechnical works: Selected case studies. Studia Geotechnica et Mechanica, 39(4), (2017).
2. R.M. Azzara, M. Girardi, C. Padovani, D. Pellegrini. Experimental and numerical investigations on the seismic behaviour of the San Frediano bell tower in Lucca, Annals of Geophysics, 61, doi: 10.4401/ag-8025, (2018b).
3. R.M. Azzara, A. De Falco, M. Girardi, D. Pellegrini. Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis, Annals of Geophysics, 60, 4, 2017, S0441, doi: 10.4401/ag-7159 (2017)
4. S. Baraccani, M. Palermo, R.M. Azzara, G. Gasparini, S. Silvestri, T. Trombetti, Structural interpretation of data from static and dynamic structural health monitoring of monumental buildings, Key Engineering Materials, 747, 431-439 (2017).
5. P. Barsocchi, P. Cassarà, F. Mavilia, D. Pellegrini, Sensing a city’s state of health: Structural Monitoring System by Internet-of-Things wireless sensing devices, IEEE Consumers Electronics Magazine, 7(2), 8287063, 22-31 (2018).
6. M.L. Beconcini. Il tempo dei lucchesi: la torre delle ore e il suo orologio. Maria Pacini Fazzi Editore. ISBN: 978-88-6550-565-6, (2017).
7. G. Bongiovanni, G. Buffarini, P. Clemente, D. Rinaldis, D. Saetta. Dynamic characteristics of the Amphitheatrum Flavium northern wall from traffic-induced vibrations, Annals of Geophysics, 60, 4, 2017, S0439, doi: 10.4401/ag-7178 (2017).
8. R. Brincker, C. Ventura. Introduction to Operational Modal analysis, Wiley (2015).
9. Cabboi, A.; Gentile, C.; Saisi, A. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Construction and Building Materials, 156, 252–265 (2017).
10. M. Celebi, T. Kashima, S.F. Ghaharic, S. Koyama, E. Taciroğlu. Before and after retrofit behavior and performance of a 55-story tall building inferred from distant earthquake and ambient vibration data. Earthquake Spectra.33(4), 1599-1626. (2017).
11. S. Chiostrini, F. Lancieri, A. Marradi, M. Nocentini, A. Vignoli, Numerical evaluation and experimental measurements of traffic-induced vibrations, Transactions on Modelling and Simulation vol 10, WIT Press, ISSN 1743-355X (1995).
12. A. D’Alessandro et al. Real-time urban seismic network and structural monitoring by means of accelerometric sensors: Application to the historic buildings of Catania (Italy). IEEE International Conference on environmental Engineering EE2108. Proceedings. p. 1-5. (2018).
13. J. Díaz , M. Ruiz , P.S. Sánchez-Pastor, P. Romero. Urban Seismology: on the origin of earth vibrations within a city, www.nature.com/scientificreports, DOI:10.1038/s41598-017-15499-y (2017)
14. S.W. Doebling, C.R. Farrar, M.B. Prime, D. Shevitz. Damage Identification abd Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory, New Mexico, NM, pp.132 (1996).
15. A. Erkal. Transmission of Traffic-induced Vibrations on and around the Minaret of Little Hagia Sophia. International Journal of Architectural Heritage, 11(3), 349–362 (2017).
16. M.R. Gallipoli et al. Empirical estimates of dynamic parameters on a large set of European buildings. Bulletin of Earthquake Engineering. 8:593–607 DOI 10.1007/s10518-009-9133-6 (2010)
17. C. Gentile, A. Saisi. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials, 21(6), 1311-1321,(2007).
18. M. Girardi, C. Padovani, D. Pellegrini, Effects of the stress field on the dynamic properties of masonry bell towers. AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 3, 216-229 (2017).
19. M. Girardi, C. Padovani, D. Pellegrini, L. Robol. A model updating procedure to enhance structural analysis in the FE code NOSA-ITACA. Journal of Perfomance of Constructed Facilities, in press., arXiv:1902.03949 [cs.CE], 2019.
20. D.N. Green, I.D. Bastow, B. Dashwood, S.E.J. Nippress. Characterizing Broadband Seismic Noise in Central London. Seismological Research Letters, 88 (1): 113-124 (2016).
21. L. Iafolla et al. OS-IS a new method for the sea waves monitoring, MTS/IEEE OCEANS 2015. Discovering Sustainable Ocean Energy for a New World. Genova, 17 September 2015, Article number 7271432.
22. Y. Kaya, E. Safak. Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems. Bullettin of Earthquake Engineering. 13:917–934 (2015).
23. A. Kita, N. Cavalagli, F. Ubertini. Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mechanical Systems and Signal Processing, 120, 180-202 (2019).
24. G. Lacanna, M. Ripepe, E. Marchetti, M. Coli, C.A. Garzonio. Dynamic response of the Baptistery of San Giovanni in Florence, Italy, based on ambient vibration test. Journal of . Cultural Heritage, 20, 632–640 (2016).
25. G. Lacanna, M. Ripepe, E. Marchetti,R. Genco, E. Marchetti. Full structural dynamic response from ambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry. NDT and E International, 102, 9–15, (2019)
26. F. Lorenzoni, M. Caldon, F. da Porto, C. Modena, T. Aoki. Post-earthquake controls and damage detection through structural health monitoring: applications in l’Aquila. Journal of Civil Structural health Monitoring. 8(2), 217-236 (2018).
27. N.M.M. Maia, J.M.M. Silva. Theoretical and Experimental Modal Analysis. Research Studies Press Ltd.
28. M.G. Masciotta, L. F. Ramos, P.B. Luorenço. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journal of . Cultural Heritage, 27, 36–47 (2017).
29. T.J. Matarazzo, P. Santi, S. N. Pakzad, K. Carter, C. Ratti, B. Moaveni, C. Osgood, N.Jacob. Crowdsensing Framework for Monitoring Bridge Vibrations Using Moving Smartphones. Proceedings of the IEEE. 106 (4), April 2018, Pages 577-593.
30. A. Pau, F. Vestroni. Vibration analysis and dynamic characterization of the Colosseum, Structural Control and Health Monitoring. 15:1105–1121, DOI: 10.1002/stc.253 (2008).
31. B. Peeters, B., G. De Roeck. Reference-based stochastic subspace identification for output-only modal analysis, Mech Syst Signal Process;13(6):855–78 (1999).
32. D. Pellegrini, TruDI software - Version 2.0 - A matlab code for structural dynamic identification, 2019.
33. D. Pellegrini, M. Girardi., C. Padovani, R.M. Azzara. A new numerical procedure for assessing the dynamic behaviour of ancient masonry towers. In: Papadrakakis M. and Fragiadakis M. (eds), COMPDYN 2017, 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Proceedings (2017).
34. A. Pierdicca, F. Clementi, D. Isidori, E. Concettoni, C. Cristalli, S. Lenci, Numerical model upgrading of a historical masonry palace monitored with a wireless sensor network, International Journal of Masonry Research and Innovation 1 (1), 74-98, 2016.
35. G.A. Prieto, J.F. Lawrence, A.I. Chung, M.D. Kohler .Impulse Response of Civil Structures from Ambient Noise Analysis, Bullettin of Seismological Society of America, 100, 5A, 2322–2328, doi: 10.1785/0120090285 (2010).
36. L.F. Ramos, L. Marques, P.B. Lourenco, G. De Roeck, A. Campos-Costa. Monitoring historic masonry structures with operational modal analysis: two case studies, Mechanical Systems and Signal Processing. 24: 1291–1305, (2010).
37. E. Reynders, K. Maes, G. Lombaert, G. De Roeck. Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications. Mech. Syst. Signal Process, 66-67:13-30 (2016).
38. Shih C.Y. et al. Complex mode indication function and its applications to spatial domain parameter estimation. Mech. Syst. Signal Process, 2(4): 367-377 (1988).
39. J.R. R. Ritter, S.F. Balan, K.P. Bonjer, T. Diehl, T. Forbriger, G. Mărmureanu, F. Wenzel, W.Wirth, Broadband urban seismology in the Bucharest metropolitan area, Seismological. Research Letters, 76, 574–580 (2005).
40. I. Roselli, V. Fioriti, I. Bellagamba, M. Mongelli, A. Tatì, M. Barbera, M. Magnani Cianetti, G. De Canio. Urban transport vibrations and cultural heritage sites in Rome: the cases of the temple of Minerva amd the catacomb of Priscilla. WIT Transactions on Ecology and the Environment, 223, 335-343 (2017).
41. M. Todorovska. Soil-Structure System Identification of Millikan Library North–South Response during Four Earthquakes (1970–2002): What Caused the Observed Wandering of the System Frequencies? Bulletin of the Seismological Society of America, 99(2A), 626–635, (2009).
42. Trifunac, M.D. Wind and microtremor induced vibrations of a twenty-two story steel frame building. Sc. Rep. of Earthquake Engineering Research Laboratory of California Institute of Techonology, Pasadena, California, USA, pp. 52 (1970).
43. F. Ubertini et al. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing. 82(1), pp.307-322, (2017).
44. M. Wyjadlowski. Methodology of dynamic monitoring of structures in the vivinity of hydrotechnical works: Selected case studies. Studia Geotechnica et Mechanica, 39(4), (2017).
Type
article
File(s)
Loading...
Name
1907.00765.pdf
Description
Open Access
Size
1.88 MB
Format
Adobe PDF
Checksum (MD5)
f0f174773c8f48884d85bcf34921686b