Options
Orthogonal relation between wavefield polarization and fast S wave direction in the Val d’Agri region: An integrating method to investigate rock anisotropy
Author(s)
Language
English
Obiettivo Specifico
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/119 (2014)
ISSN
0148-0227
Publisher
American Geophysical Union
Pages (printed)
396–408
Issued date
2014
Keywords
Abstract
Wavefield polarization is investigated using 200 seismograms recorded by a network of 20
stations installed on rock outcrops in the Val d’Agri region that hosts the largest oil fields in the
southern Apennines (Italy). Polarization is assessed both in the frequency and time domains
through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix
analysis, respectively. We find that most of the stations show a persistent horizontal polarization
of waveforms, with a NE-SW predominant trend. This direction is orthogonal to the general
trend of Quaternary normal faults in the region and to the maximum horizontal stress related to
the present extensional regime. According to previous studies in other areas, such a directional
effect is interpreted as due to the presence of fault-related fracture fields, polarization being
orthogonal to their predominant direction. A comparison with S wave anisotropy inferred from
shear wave splitting indicates an orthogonal relation between horizontal polarization and fast S
wave direction. This suggests that wavefield polarization and fast velocity direction are effects
of the same cause: The existence of an anisotropic medium represented by fractured rocks
where shear wave velocity is larger in the crack-parallel component and compliance is larger
perpendicularly to the crack strike. The latter is responsible for the observed anisotropic pattern
of amplitudes of horizontal ground motion in the study area.
stations installed on rock outcrops in the Val d’Agri region that hosts the largest oil fields in the
southern Apennines (Italy). Polarization is assessed both in the frequency and time domains
through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix
analysis, respectively. We find that most of the stations show a persistent horizontal polarization
of waveforms, with a NE-SW predominant trend. This direction is orthogonal to the general
trend of Quaternary normal faults in the region and to the maximum horizontal stress related to
the present extensional regime. According to previous studies in other areas, such a directional
effect is interpreted as due to the presence of fault-related fracture fields, polarization being
orthogonal to their predominant direction. A comparison with S wave anisotropy inferred from
shear wave splitting indicates an orthogonal relation between horizontal polarization and fast S
wave direction. This suggests that wavefield polarization and fast velocity direction are effects
of the same cause: The existence of an anisotropic medium represented by fractured rocks
where shear wave velocity is larger in the crack-parallel component and compliance is larger
perpendicularly to the crack strike. The latter is responsible for the observed anisotropic pattern
of amplitudes of horizontal ground motion in the study area.
References
Amato, A., and P. Montone (1997), Present-day stress field and active
tectonics in southern peninsular Italy, Geophys. J. Int., 130(2), 519–534.
Ben-Zion, Y., and C. G. Sammis (2003), Characterization of fault zones,
Pure Appl. Geophys., 160, 677–715.
Bonamassa, O., and J. E. Vidale (1991), Directional site resonances observed
from aftershocks of the 18 October Loma Prieta earthquake, Bull. Seismol.
Soc. Am., 81(5), 1945–1957.
Boness, N. L., and M. D. Zoback (2006), Mapping stress and structurally
controlled crustal shear velocity anisotropy in California, Geology,
34(10), 825–828.
Buech, F., T. R. Davies, and J. R. Pettinga (2010), The Little Red Hill seismic
experimental study: Topographic effects on ground motion at a bedrock-
dominated mountain edifice, Bull. Seismol. Soc. Am., 100,
2219–2229, doi:10.1785/0120090345.
Burjànek, J., G. Gassner-Stamm, V. Poggi, J. R. Moore, and D. Fäh (2010),
Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int.,
180, 820–828.
Burjànek, J., J. R. Moore, F. X. Yugsi-Molina, and D. Fäh (2012),
Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int.,
188, 559–569, doi:10.1111/j.1365-246X.2011.05272.x.
Calderoni, G., A. Rovelli, and R. Di Giovambattista (2010), Large amplitude
variations recorded by an on-fault seismological station during the L’Aquila earthquakes: Evidence for a complex fault-induced site effect,
Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697.
Cello, G., R. Gambini, S.Mazzoli, A. Read, E. Tondi, and V. Zucconi (2000),
Fault zone characteristics and scaling properties of the Val d’Agri fault system
(Southern Apennines, Italy), J. Geodyn., 29(3–5), 293–307.
Cello, G., E. Tondi, L. Micarelli, and L. Mattioni (2003), Active tectonics and
earthquake sources in the epicentral area of the 1857 Basilicata earthquake
(Southern Italy), J. Geodyn., 36, 37–50, doi:10.1016/S0264-3707(03)00037-1.
Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian
seismicity using 20 years of instrumental recordings, Tectonophysics, 395,
251–268.
Cianfarra, P., A. Forieri, F. Salvini, I. E. Tabacco, and A. Zirizotti (2009),
Geological setting of the Concordia Trench-Lake system in East Antarctica,
Geophys. J. Int, 177, 1305–1314, doi:10.1111/j.1365-246X.2009.04123.x.
Cinque, A., E. Patacca, P. Scandone, and M. Tozzi (1993), Quaternary kinematic
evolution of the Southern Apennines: Relationships between surface geological
features and deep lithospheric structures, Ann. Geofis., 36, 249–259.
Cochran, E. S., Y.-G. Li, and J. E. Vidale (2006), Anisotropy in the shallow
crust observed around the San Andreas Fault before and after the 2004 M
6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 9(4B), 364–375,
doi:10.1785/0120050804.
CPTI Working Group (2004), Catalogo Parametrico dei Terremoti
Italiani, (CPTI04), INGV, Bologna. [Available at http://emidius.mi.
ingv.it/CPTI04/.]
Crampin, S. (1978), Seismic wave propagation through a cracked solid:
Polarization as a possible dilatancy diagnostic, Geophys. JR Astron. Soc,
53, 467–496.
Cucci, L., S. Pondrelli, A. Freopoli, M. T. Mariucci, and M. Moro (2004),
Local pattern of stress field and seismogenic sources in Meandro Pergola
basin and in Agri valley (Southern Italy), Geophys. J. Int., 156, 575–583.
Cultrera, G., A. Rovelli, G. Mele, R. Azzara, A. Caserta, and F.Marra (2003),
Azimuth dependent amplification ofweak and strong groundmotions within
a fault zone, Nocera Umbra, Central Italy, J. Geophys. Res., 108(B3),
2156–2170, doi:10.1029/2002JB001929.
D’Agostino, N., A. Avallone, D. Cheloni, S. Mantenuto, and G. Selvaggi
(2008), Active tectonics of the Adriatic region from GPS and earthquake
slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/2008JB005860.
Di Giulio, G., F. Cara, A. Rovelli, G. Lombardo, and R. Rigano (2009),
Evidences for strong directional resonances in intensely deformed zones
of the Pernicana fault, Mount Etna, Italy, J. Geophys. Res., 114,
B10308, doi:10.1029/2009JB006393.
Di Giulio, G., A. Rovelli, F. Cara, P. P. Bruno, M. Punzo, and F. Varriale (2013),
A controlled-source experiment to investigate the origin of wavefield polarization
in fault zones, paper presented at IAHS-IAPSO-IASPEI Joint Assembly,
22–26 July 2013, Gothenburg, Sweden (abstract n. 2843253).
Falsaperla, S., F. Cara, A. Rovelli, M. Neri, B. Behncke, and V. Acocella
(2010), Effects of the 1989 fracture system in the dynamics of the upper
SE flank of Etna revealed by volcanic tremor data: The missing link?,
J. Geophys. Res., 115, B11306, doi:10.1029/2010JB007529.
Holton, J. (1999), Four geologic settings dominate oil, gas fields of Italy,
Sicily, Oil Gas J., 97(49), 81–84.
Improta, L., et al. (2010), Detecting young, slow-slipping active faults by
geologic and multidisciplinary high-resolution geophysical investigations:
A case study from the Apennine seismic belt, Italy, J. Geophys. Res., 115,
B11307, doi:10.1029/2010JB000871.
Italiano, F.,M.Martelli, G.Martinelli, P. M. Nuccio, andM. Paternoster (2001),
Significance of earthquake-related anomalies in fluids of Val d’Agri (Southern
Italy), Terra Nova, 13, 249–257, doi:10.1046/j.1365-3121.2001.00346.x.
Jurkevics, A. (1988), Polarization analysis of three component array data,
Bull. Seismol. Soc. Am., 78, 1725–1743.
Karabulut, H., and M. Bouchon (2007), Spatial variability and non-linearity
of strong ground motion near a fault, Geophys. J. Int., 170(1), 262–274.
Lazzari, S., and F. Lentini (1991), Carta Geologica del Bacino del Fiume
Agri. Scala 1:50.000, S.EL.CA. (Ed.), Firenze.
Marzorati, S., C. Ladina, E. Falcucci, S. Gori, M. Saroli, G. Ameri, and
F. Galadini (2011), Site effects “On the Rock”: The case study of
Castelvecchio Subequo (L’Aquila, central Italy), B. Earthq. Eng., 9,
841–868, doi:10.1007/s10518-011-9263-5.
Maschio, L., L. Ferranti, and P. Burrato (2005), Active extension in Val
d’Agri area, Southern Apennines, Italy: Implications for the geometry of
the seismogenic belt, Geophys. J. Int., 162(2), 591–609.
Massa, M., S. Lovati, E. D’Alema, G. Ferretti, and M. Bakavoli (2010),
Experimental approach for estimating seismic amplification effects at the
top of a ridge and their implication on ground motion predictions: The case
of Narni (Central Italy), Bull. Seismol. Soc. Am., 100, 3020–3034,
doi:10.1785/0120090382.
Mazzoli, S., S. Corrado, M. De Donatis, D. Scrocca, R. W. H. Butler,
D. Di Bucci, G. Naso, C. Nicolai, and V. Zucconi (2000), Time and space variability
of thin skinned and thick skinned thrust tectonics in the Apennines
(Italy), Rendiconti Lincei Scienze Fisiche e Naturali, XI(1), 5–39.
Menardi Noguera, A., and G. Rea (2000), Deep structure of the Campanian-
Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324(4),
239–265.
Moore, J., V. Gischig, J. Burjanek, S. Loew, and D. Fäh (2011), Site effects
in unstable rock slopes: Dynamic behavior of the Randa instability
(Switzerland), Bull. Seismol. Soc. Am., 101(6), 3110–3116, doi:10.1785/
0120110127.
Panzera, F., G. Lombardo, and R. Rigano (2011), Evidence of topographic
effects through the analysis of ambient noise measurements, Seismol.
Res. Lett., 82, 413–419, doi:10.1785/gssrl.82.3.413.
Pastori, M., D. Piccinini, L. Margheriti, L. Improta, L. Valoroso,
L. Chiaraluce, and C. Chiarabba (2009), Stress aligned cracks in the upper
crust of the Val d’Agri region as revealed by shear wave splitting,
Geophys. J. Int., 179(1), 601–614.
Pastori, M., D. Piccinini, L. Valoroso, A. Wuestefeld, L. Zaccarelli,
F. Bianco, M. Kendall, D. Di Bucci, L. Margheriti, and M. R. Barchi
(2012), Crustal fracturing field and presence of fluid as revealed by seismic
anisotropy: Case histories from seismogenic areas in the Apennines (Italy),
Bollettino di Geofisica Teorica e Applicata, 53(4), 417–433, doi:10.4430/
bgta0047.
Patacca, E., and P. Scandone (1989), Post-Tortonian mountain building in
the Apennines. The role of the passive sinking of a relic lithospheric slab:
The Lithosphere in Italy, in Atti dei Convegni dei Lincei,vol. 80, edited
by A. Boriani et al., pp. 157–176, Academia Nazionale dei Lincei,
Roma, Italia.
Patacca, E., and P. Scandone (2001), Late thrust propagation and sedimentary
response in the thrust belt—Foredeep system of the Southern
Apennines (Pliocene-Pleistocene), in Anatomy of a Mountain: The
Apennines and Adjacent Mediterranean Basins, edited by G. B. Vai and
I. P. Martini, pp. 401–440, Kluwer Academic Publ., London, U.K.
Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy
along theKaradereDuzce branch of theNorth Anatolian fault,Geophys. J. Int.,
159(1), 253–274, doi:10.1111/j.1365-246X.2004.02379.x.
Peng, Z., and Y. Ben-Zion (2006), Temporal changes of shallow seismic
velocity around the Karadere-Duzce Branch of the North Anatolian Fault
and strong ground motion, Pure Appl. Geophys., 163, 567–600.
Piccinini, D., M. Pastori, and M. Marghieriti (2013), ANISOMAT+: An automatic
tool to retrieve seismic anisotropy from local earthquakes, Comput.
Geosci., 56, 62–68, ISSN 0098–3004, doi:10.1016/j.cageo.2013.01.012.
Pischiutta, M., G. Cultrera, A. Caserta, L. Luzi, and A. Rovelli (2010),
Topographic effects on the hill of Nocera Umbra, Central Italy,
Geophys. J. Int., 2, 977–987, doi:10.1111/j.1365246X.2010.04654.x.
Pischiutta, M., F. Salvini, J. Fletcher, A. Rovelli, and Y. Ben-Zion (2012),
Horizontal polarization of ground motion in the Hayward fault zone at
Fremont, California: Dominant fault-high-angle polarization and fault-induced
cracks, Geophys. J. Int., 188(3), 1255–1272.
Pischiutta, M., A. Rovelli, F. Salvini, G. Di Giulio, and Y. Ben-Zion (2013),
Directional resonance variations across the Pernicana fault, Mt. Etna, in
relation to brittle deformation fields, Geophys. J. Int., 193, 986–996,
doi:10.1093/gji/ggt031.
Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, and
G. Vannucci (2006), The Italian CMT dataset from 1977 to the present,
Phys. Earth Planet. Int., 159(3–4), 286–303, doi:10.1016/j.pepi.2006.07.008.
Riedel, W. (1929), Zur mechanik geologischer Brucherscheinungen, Zbl.
Mineral. Geol. Paläont.B, 1929B, 354–368.
Rigano, R., F. Cara, G. Lombardo, and A. Rovelli (2008), Evidence of
ground motion polarization on fault zones of Mount Etna volcano,
J. Geophys. Res., 113, B10306, doi:10.1029/2007JB005574.
Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005),
Crustal velocity and strain rate fields in Italy and surrounding regions:
New results from the analysis of permanent and nonpermanent GPS
networks, Geophys. J. Int., 161, 861–880.
Shiner, P., A. Beccacini, and S. Mazzoli (2004), Thin-skinned versus thickskinned
structural models for Apulian carbonate reservoirs: Constraints
from the Val d’Agri fields, S Apennines, Italy, Mar. Pet. Geol., 121(7),
805–827.
Spudich, P., and K. B. Olsen (2001), Fault zone amplified waves as a possible
seismic hazard along the Calaveras Fault in central California,
Geophys. Res. Lett., 28(13), 2533–2536.
Spudich, P., M. Hellweg, and H. K. Lee (1996), Directional topographic site
response at Tarzana observed in aftershocks of the 1994 Northridge
California earthquake: Implications for mainshocks motions, Bull.
Seismol. Soc. Am., 86, 193–208.
Syracuse, E. M., R. A. Holt, M. K. Savage, J. H. Johnson, C. H. Thurber,
K. Unglert, K. N. Allan, S. Karaliyadda, and M. Henderson (2012),
Temporal and spatial evolution of hypocentres and anisotropy from the
Darfield aftershock sequence: Implications for fault geometry and age, N.
Z. J. Geol. Geophys., 55(7), 287–293, doi:10.1080/00288306.2012.690766.
Trice, R. (1999), Application of borehole image logs in constructing 3D
static models of productive fracture network in the Apulian Platform, Southern Apennines, in Borehole Imaging: Applications and Case
Histories, Geological Society, London, Special Publications, vol. 159,
edited by M. A. Lovell et al., pp. 156–176, doi:10.1144/GSL
.SP.1999.159.01.08.
Valoroso, L., L. Improta, L. Chiaraluce, R. Di Stefano, L. Ferranti,
A. Govoni, and C. Chiarabba (2009), Active faults and induced seismicity
in the Val d’Agri area (Southern Apennines, Italy), Geophys. J. Int., 178,
488–502, doi:10.1111/j.1365-246X.2009.04166.x.
Valoroso, L., L. Improta, P. De Gori, and C. Chiarabba (2011), Upper crustal
structure, seismicity and pore pressure variations in an extensional seismic
belt through 3D and 4D Vp and Vp/Vs models: The example of the Val
d’Agri area (Southern Italy), J. Geophys. Res., 116, B07303,
doi:10.1029/2010JB007661.
Zembo, I., L. Panzeri, A. Galli, R. Berenzio, M. Martini, and E. Sibilia
(2009), Quaternary evolution of the intermontane Val d’Agri Basin,
Southern Apennines, Quat. Res., 72(3), 431–442.
tectonics in southern peninsular Italy, Geophys. J. Int., 130(2), 519–534.
Ben-Zion, Y., and C. G. Sammis (2003), Characterization of fault zones,
Pure Appl. Geophys., 160, 677–715.
Bonamassa, O., and J. E. Vidale (1991), Directional site resonances observed
from aftershocks of the 18 October Loma Prieta earthquake, Bull. Seismol.
Soc. Am., 81(5), 1945–1957.
Boness, N. L., and M. D. Zoback (2006), Mapping stress and structurally
controlled crustal shear velocity anisotropy in California, Geology,
34(10), 825–828.
Buech, F., T. R. Davies, and J. R. Pettinga (2010), The Little Red Hill seismic
experimental study: Topographic effects on ground motion at a bedrock-
dominated mountain edifice, Bull. Seismol. Soc. Am., 100,
2219–2229, doi:10.1785/0120090345.
Burjànek, J., G. Gassner-Stamm, V. Poggi, J. R. Moore, and D. Fäh (2010),
Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int.,
180, 820–828.
Burjànek, J., J. R. Moore, F. X. Yugsi-Molina, and D. Fäh (2012),
Instrumental evidence of normal mode rock slope vibration, Geophys. J. Int.,
188, 559–569, doi:10.1111/j.1365-246X.2011.05272.x.
Calderoni, G., A. Rovelli, and R. Di Giovambattista (2010), Large amplitude
variations recorded by an on-fault seismological station during the L’Aquila earthquakes: Evidence for a complex fault-induced site effect,
Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697.
Cello, G., R. Gambini, S.Mazzoli, A. Read, E. Tondi, and V. Zucconi (2000),
Fault zone characteristics and scaling properties of the Val d’Agri fault system
(Southern Apennines, Italy), J. Geodyn., 29(3–5), 293–307.
Cello, G., E. Tondi, L. Micarelli, and L. Mattioni (2003), Active tectonics and
earthquake sources in the epicentral area of the 1857 Basilicata earthquake
(Southern Italy), J. Geodyn., 36, 37–50, doi:10.1016/S0264-3707(03)00037-1.
Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian
seismicity using 20 years of instrumental recordings, Tectonophysics, 395,
251–268.
Cianfarra, P., A. Forieri, F. Salvini, I. E. Tabacco, and A. Zirizotti (2009),
Geological setting of the Concordia Trench-Lake system in East Antarctica,
Geophys. J. Int, 177, 1305–1314, doi:10.1111/j.1365-246X.2009.04123.x.
Cinque, A., E. Patacca, P. Scandone, and M. Tozzi (1993), Quaternary kinematic
evolution of the Southern Apennines: Relationships between surface geological
features and deep lithospheric structures, Ann. Geofis., 36, 249–259.
Cochran, E. S., Y.-G. Li, and J. E. Vidale (2006), Anisotropy in the shallow
crust observed around the San Andreas Fault before and after the 2004 M
6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 9(4B), 364–375,
doi:10.1785/0120050804.
CPTI Working Group (2004), Catalogo Parametrico dei Terremoti
Italiani, (CPTI04), INGV, Bologna. [Available at http://emidius.mi.
ingv.it/CPTI04/.]
Crampin, S. (1978), Seismic wave propagation through a cracked solid:
Polarization as a possible dilatancy diagnostic, Geophys. JR Astron. Soc,
53, 467–496.
Cucci, L., S. Pondrelli, A. Freopoli, M. T. Mariucci, and M. Moro (2004),
Local pattern of stress field and seismogenic sources in Meandro Pergola
basin and in Agri valley (Southern Italy), Geophys. J. Int., 156, 575–583.
Cultrera, G., A. Rovelli, G. Mele, R. Azzara, A. Caserta, and F.Marra (2003),
Azimuth dependent amplification ofweak and strong groundmotions within
a fault zone, Nocera Umbra, Central Italy, J. Geophys. Res., 108(B3),
2156–2170, doi:10.1029/2002JB001929.
D’Agostino, N., A. Avallone, D. Cheloni, S. Mantenuto, and G. Selvaggi
(2008), Active tectonics of the Adriatic region from GPS and earthquake
slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/2008JB005860.
Di Giulio, G., F. Cara, A. Rovelli, G. Lombardo, and R. Rigano (2009),
Evidences for strong directional resonances in intensely deformed zones
of the Pernicana fault, Mount Etna, Italy, J. Geophys. Res., 114,
B10308, doi:10.1029/2009JB006393.
Di Giulio, G., A. Rovelli, F. Cara, P. P. Bruno, M. Punzo, and F. Varriale (2013),
A controlled-source experiment to investigate the origin of wavefield polarization
in fault zones, paper presented at IAHS-IAPSO-IASPEI Joint Assembly,
22–26 July 2013, Gothenburg, Sweden (abstract n. 2843253).
Falsaperla, S., F. Cara, A. Rovelli, M. Neri, B. Behncke, and V. Acocella
(2010), Effects of the 1989 fracture system in the dynamics of the upper
SE flank of Etna revealed by volcanic tremor data: The missing link?,
J. Geophys. Res., 115, B11306, doi:10.1029/2010JB007529.
Holton, J. (1999), Four geologic settings dominate oil, gas fields of Italy,
Sicily, Oil Gas J., 97(49), 81–84.
Improta, L., et al. (2010), Detecting young, slow-slipping active faults by
geologic and multidisciplinary high-resolution geophysical investigations:
A case study from the Apennine seismic belt, Italy, J. Geophys. Res., 115,
B11307, doi:10.1029/2010JB000871.
Italiano, F.,M.Martelli, G.Martinelli, P. M. Nuccio, andM. Paternoster (2001),
Significance of earthquake-related anomalies in fluids of Val d’Agri (Southern
Italy), Terra Nova, 13, 249–257, doi:10.1046/j.1365-3121.2001.00346.x.
Jurkevics, A. (1988), Polarization analysis of three component array data,
Bull. Seismol. Soc. Am., 78, 1725–1743.
Karabulut, H., and M. Bouchon (2007), Spatial variability and non-linearity
of strong ground motion near a fault, Geophys. J. Int., 170(1), 262–274.
Lazzari, S., and F. Lentini (1991), Carta Geologica del Bacino del Fiume
Agri. Scala 1:50.000, S.EL.CA. (Ed.), Firenze.
Marzorati, S., C. Ladina, E. Falcucci, S. Gori, M. Saroli, G. Ameri, and
F. Galadini (2011), Site effects “On the Rock”: The case study of
Castelvecchio Subequo (L’Aquila, central Italy), B. Earthq. Eng., 9,
841–868, doi:10.1007/s10518-011-9263-5.
Maschio, L., L. Ferranti, and P. Burrato (2005), Active extension in Val
d’Agri area, Southern Apennines, Italy: Implications for the geometry of
the seismogenic belt, Geophys. J. Int., 162(2), 591–609.
Massa, M., S. Lovati, E. D’Alema, G. Ferretti, and M. Bakavoli (2010),
Experimental approach for estimating seismic amplification effects at the
top of a ridge and their implication on ground motion predictions: The case
of Narni (Central Italy), Bull. Seismol. Soc. Am., 100, 3020–3034,
doi:10.1785/0120090382.
Mazzoli, S., S. Corrado, M. De Donatis, D. Scrocca, R. W. H. Butler,
D. Di Bucci, G. Naso, C. Nicolai, and V. Zucconi (2000), Time and space variability
of thin skinned and thick skinned thrust tectonics in the Apennines
(Italy), Rendiconti Lincei Scienze Fisiche e Naturali, XI(1), 5–39.
Menardi Noguera, A., and G. Rea (2000), Deep structure of the Campanian-
Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324(4),
239–265.
Moore, J., V. Gischig, J. Burjanek, S. Loew, and D. Fäh (2011), Site effects
in unstable rock slopes: Dynamic behavior of the Randa instability
(Switzerland), Bull. Seismol. Soc. Am., 101(6), 3110–3116, doi:10.1785/
0120110127.
Panzera, F., G. Lombardo, and R. Rigano (2011), Evidence of topographic
effects through the analysis of ambient noise measurements, Seismol.
Res. Lett., 82, 413–419, doi:10.1785/gssrl.82.3.413.
Pastori, M., D. Piccinini, L. Margheriti, L. Improta, L. Valoroso,
L. Chiaraluce, and C. Chiarabba (2009), Stress aligned cracks in the upper
crust of the Val d’Agri region as revealed by shear wave splitting,
Geophys. J. Int., 179(1), 601–614.
Pastori, M., D. Piccinini, L. Valoroso, A. Wuestefeld, L. Zaccarelli,
F. Bianco, M. Kendall, D. Di Bucci, L. Margheriti, and M. R. Barchi
(2012), Crustal fracturing field and presence of fluid as revealed by seismic
anisotropy: Case histories from seismogenic areas in the Apennines (Italy),
Bollettino di Geofisica Teorica e Applicata, 53(4), 417–433, doi:10.4430/
bgta0047.
Patacca, E., and P. Scandone (1989), Post-Tortonian mountain building in
the Apennines. The role of the passive sinking of a relic lithospheric slab:
The Lithosphere in Italy, in Atti dei Convegni dei Lincei,vol. 80, edited
by A. Boriani et al., pp. 157–176, Academia Nazionale dei Lincei,
Roma, Italia.
Patacca, E., and P. Scandone (2001), Late thrust propagation and sedimentary
response in the thrust belt—Foredeep system of the Southern
Apennines (Pliocene-Pleistocene), in Anatomy of a Mountain: The
Apennines and Adjacent Mediterranean Basins, edited by G. B. Vai and
I. P. Martini, pp. 401–440, Kluwer Academic Publ., London, U.K.
Peng, Z., and Y. Ben-Zion (2004), Systematic analysis of crustal anisotropy
along theKaradereDuzce branch of theNorth Anatolian fault,Geophys. J. Int.,
159(1), 253–274, doi:10.1111/j.1365-246X.2004.02379.x.
Peng, Z., and Y. Ben-Zion (2006), Temporal changes of shallow seismic
velocity around the Karadere-Duzce Branch of the North Anatolian Fault
and strong ground motion, Pure Appl. Geophys., 163, 567–600.
Piccinini, D., M. Pastori, and M. Marghieriti (2013), ANISOMAT+: An automatic
tool to retrieve seismic anisotropy from local earthquakes, Comput.
Geosci., 56, 62–68, ISSN 0098–3004, doi:10.1016/j.cageo.2013.01.012.
Pischiutta, M., G. Cultrera, A. Caserta, L. Luzi, and A. Rovelli (2010),
Topographic effects on the hill of Nocera Umbra, Central Italy,
Geophys. J. Int., 2, 977–987, doi:10.1111/j.1365246X.2010.04654.x.
Pischiutta, M., F. Salvini, J. Fletcher, A. Rovelli, and Y. Ben-Zion (2012),
Horizontal polarization of ground motion in the Hayward fault zone at
Fremont, California: Dominant fault-high-angle polarization and fault-induced
cracks, Geophys. J. Int., 188(3), 1255–1272.
Pischiutta, M., A. Rovelli, F. Salvini, G. Di Giulio, and Y. Ben-Zion (2013),
Directional resonance variations across the Pernicana fault, Mt. Etna, in
relation to brittle deformation fields, Geophys. J. Int., 193, 986–996,
doi:10.1093/gji/ggt031.
Pondrelli, S., S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, and
G. Vannucci (2006), The Italian CMT dataset from 1977 to the present,
Phys. Earth Planet. Int., 159(3–4), 286–303, doi:10.1016/j.pepi.2006.07.008.
Riedel, W. (1929), Zur mechanik geologischer Brucherscheinungen, Zbl.
Mineral. Geol. Paläont.B, 1929B, 354–368.
Rigano, R., F. Cara, G. Lombardo, and A. Rovelli (2008), Evidence of
ground motion polarization on fault zones of Mount Etna volcano,
J. Geophys. Res., 113, B10306, doi:10.1029/2007JB005574.
Serpelloni, E., M. Anzidei, P. Baldi, G. Casula, and A. Galvani (2005),
Crustal velocity and strain rate fields in Italy and surrounding regions:
New results from the analysis of permanent and nonpermanent GPS
networks, Geophys. J. Int., 161, 861–880.
Shiner, P., A. Beccacini, and S. Mazzoli (2004), Thin-skinned versus thickskinned
structural models for Apulian carbonate reservoirs: Constraints
from the Val d’Agri fields, S Apennines, Italy, Mar. Pet. Geol., 121(7),
805–827.
Spudich, P., and K. B. Olsen (2001), Fault zone amplified waves as a possible
seismic hazard along the Calaveras Fault in central California,
Geophys. Res. Lett., 28(13), 2533–2536.
Spudich, P., M. Hellweg, and H. K. Lee (1996), Directional topographic site
response at Tarzana observed in aftershocks of the 1994 Northridge
California earthquake: Implications for mainshocks motions, Bull.
Seismol. Soc. Am., 86, 193–208.
Syracuse, E. M., R. A. Holt, M. K. Savage, J. H. Johnson, C. H. Thurber,
K. Unglert, K. N. Allan, S. Karaliyadda, and M. Henderson (2012),
Temporal and spatial evolution of hypocentres and anisotropy from the
Darfield aftershock sequence: Implications for fault geometry and age, N.
Z. J. Geol. Geophys., 55(7), 287–293, doi:10.1080/00288306.2012.690766.
Trice, R. (1999), Application of borehole image logs in constructing 3D
static models of productive fracture network in the Apulian Platform, Southern Apennines, in Borehole Imaging: Applications and Case
Histories, Geological Society, London, Special Publications, vol. 159,
edited by M. A. Lovell et al., pp. 156–176, doi:10.1144/GSL
.SP.1999.159.01.08.
Valoroso, L., L. Improta, L. Chiaraluce, R. Di Stefano, L. Ferranti,
A. Govoni, and C. Chiarabba (2009), Active faults and induced seismicity
in the Val d’Agri area (Southern Apennines, Italy), Geophys. J. Int., 178,
488–502, doi:10.1111/j.1365-246X.2009.04166.x.
Valoroso, L., L. Improta, P. De Gori, and C. Chiarabba (2011), Upper crustal
structure, seismicity and pore pressure variations in an extensional seismic
belt through 3D and 4D Vp and Vp/Vs models: The example of the Val
d’Agri area (Southern Italy), J. Geophys. Res., 116, B07303,
doi:10.1029/2010JB007661.
Zembo, I., L. Panzeri, A. Galli, R. Berenzio, M. Martini, and E. Sibilia
(2009), Quaternary evolution of the intermontane Val d’Agri Basin,
Southern Apennines, Quat. Res., 72(3), 431–442.
Type
article
File(s)
No Thumbnail Available
Name
5_JGR_Valdagrijgrb50429.pdf
Description
Main paper
Size
5.34 MB
Format
Adobe PDF
Checksum (MD5)
29171e5f1f342c9bb42ce788212fd38c