Options
Assessing the Reliability of Earthquake Environmental Effects in Historical Events: Insights from the Southern Apennines, Italy
Language
English
Obiettivo Specifico
5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
Status
Published
JCR Journal
JCR Journal
Title of the book
Issue/vol(year)
/10(2020)
Publisher
MDPI
Pages (printed)
332
Issued date
August 22, 2020
Subjects
Keywords
Abstract
Earthquake Environmental Effects (EEEs) are a common occurrence following moderate to strong seismic events. EEEs are described in literary sources even for earthquakes that occurred hundreds of years ago, but their potential for hazard assessment is not fully exploited. Here we analyze five earthquakes occurred in the Southern Apennines (Italy) between 1688 and 1980, to assess if EEEs are reliable indicators of the effects caused by past earthquakes. We investigate the spatial distribution of EEEs and their ability to repeatedly occur at the same place, and we quantitatively compare the macroseismic fields expressed in terms of damage-based intensity (MCS: Mercalli–Cancani–Sieberg) to the Environmental Scale Intensity (ESI) macroseismic field, derived from an intensity attenuation relation. We computed the field “ESI-MCS”, showing that results are consistent when comparing different seismic events and that ESI values are higher in the first ca. 10 km from the epicenter, while at distances greater than 20 km MCS values are higher than ESI. Our research demonstrates that (i) EEEs offer a detailed picture of earthquake effects in the near field and (ii) the reappraisal of literary sources under a modern perspective may provide improved input parameters that are useful for seismic hazard assessment.
References
1. Cecić, I.; Musson, R. Macroseismic surveys in theory and practice. Nat. Hazards 2004, 31, 39–61. [Google Scholar] [CrossRef]
2. Gaudiosi, G.; Nappi, R.; Alessio, G.; Porfido, S. Breve storia delle misurazioni dell’Intensità Macrosismica in Italia da Giuseppe Mercalli fino ai giorni nostri. Misc. INGV 2014, 24, 104–132, ISSN 2039–6651. [Google Scholar]
3. Grunthal, G. European Macroseismic Scale 1998 (EMS-98). In Cahiers du Centre Europeen de Geodynamique et de Seismologie; Centre Europeen de Geodynamique et de Seismologie: Walferdange, Luxembourg, 1998; Volume 15, p. 99. [Google Scholar]
4. Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J. Intensity scale ESI 2007. In Memorie Descrittive della Carta Geologica d’Italia; Guerrieri, L., Vittori, E., Eds.; Servizio Geologico d’Italia Dipartimento Difesa del Suolo (ISPRA): Rome, Italy, 2007. [Google Scholar]
5. Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake hazard and the environmental seismic intensity (ESI) scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
6. Ferrario, M.F.; Livio, F.; Capizzano, S.S.; Michetti, A.M. Developing the First Intensity Prediction Equation Based on the Environmental Scale Intensity: A Case Study from Strong Normal-Faulting Earthquakes in the Italian Apennines. Seismol. Res. Lett. 2020. [Google Scholar] [CrossRef]
7. Carrara, C.; Serva, L. Significato paleotettonico delle porzioni conglomeratiche di formazioni terrigene dell’Appennino meridionale. In Memorie della Società Geologica Italiana; Società geologica italiana: Roma, Italy, 1982; Volume 24, pp. 209–216. [Google Scholar]
8. Cinque, A.; Patacca, E.; Scandone, P.; Tozzi, M. Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann. Geophys. 1993, 36, 249–260. [Google Scholar]
9. Doglioni, C.; Harabaglia, P.; Martinelli, G.; Mongeli, F.; Zito, G. A geodynamic model of the Southern Appennines accretionary prism. Terra Nova 1996, 8, 540–547. [Google Scholar] [CrossRef]
10. Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. It. 2007, 7, 75–119. [Google Scholar]
11. DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A Compilation of Potential Sources for Earthquakes Larger Than M 5.5 in Italy and Surrounding Areas. 2018. Available online: http://diss.rm.ingv.it/diss/ (accessed on 28 July 2020).
12. ITHACA Working Group. ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019. ISPRA Geological Survey of Italy. Available online: http://sgi2.isprambiente.it/ithacaweb/Mappatura.aspx (accessed on 28 July 2020).
13. Guidoboni, E.; Valensise, G. On the complexity of earthquake sequences: A historical seismology perspective based on the L’Aquila seismicity (Abruzzo, Central Italy), 1315–1915. Earthq. Struct. 2015, 8, 153–184. [Google Scholar] [CrossRef]
14. Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: https://doi.org/10.13127/CPTI/CPTI15.2 (accessed on 28 July 2020).
15. Serva, L. Criteri geologici per la valutazione della sismicità: Considerazioni e proposte. Atti Convegni Lincei-Accad. Naz. Lincei 1995, 122, 103–116. [Google Scholar]
16. Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Sci. Data 2019, 6, 80. [Google Scholar] [CrossRef]
17. Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Guerrieri, L.; Pece, R. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines (Italy). Ital. J. Geosci. 2007, 333–346. [Google Scholar]
18. Vilardo, G.; Nappi, R.; Petti, P.; Ventura, G. Fault geometries from the space distribution of the 1990–1997 Sannio-Benevento earthquakes: Inferences on the active deformation in Southern Apennines. Tectonophysics 2003, 363, 259–271. [Google Scholar] [CrossRef]
19. Di Bucci, D.; Massa, B.; Zuppetta, A. Relay ramps in active normal fault zones: A clu to the identification of seismogenic sources (1688 Sannio earthquake, Italy). Geol. Soc. Am. Bull. 2006, 118, 430–448. [Google Scholar] [CrossRef]
20. Nappi, R.; Alessio, G.; Bronzino, G.; Terranova, C.; Vilardo, G. Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (Southern Apennines): An example of application to the Sannio-area. Nat. Hazards 2007, 45, 73–85. [Google Scholar] [CrossRef]
21. Nappi, R.; Alessio, G. Integrated morphometric analysis in GIS environment applied to active tectonic areas. In Earthquake Research and Analysis—Seismology, Seismotectonic and Earthquake Geology; InTechOpen: London, UK, 2012; ISBN 978-953-307-991-2. [Google Scholar]
22. Blumetti, A.M.; Esposito, E.; Ferreli, L.; Michetti, A.M.; Porfido, S.; Serva, L.; Vittori, E. New data and reinterpretation of the November 23, 1980, M 6.9 Irpinia-Lucania earthquake (southern Apennines) coseismic surface effects. Stud. Geol. Camerti 2002. [Google Scholar] [CrossRef]
23. Pantosti, D.; Schwartz, D.P.; Valensise, G. Paleoseismology along the 1980 surface rupture of the Irpinia Fault: Implications for earthquake recurrence in the Southern Apennines, Italy. J. Geophys. Res. 1993, 98, 6561–6577. [Google Scholar] [CrossRef]
24. Westaway, R.; Jackson, J. Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature 1984, 312, 436–438. [Google Scholar] [CrossRef]
25. Esposito, E.; Porfido, S. Gli effetti cosismici sull’ambiente fisico per la valutazione della vulnerabilità del territorio. In Dalle Fonti all’Evento. Percorsi Strumenti e Metodi per L’analisi del Terremoto del 23 Luglio 1930 nell’Area del Vulture; Gizzi, F.T., Masini, N., Eds.; Edizioni Scientifiche Italiane: Naples, Italy, 2010; pp. 129–142. ISBN 978-88-495-2050-7. [Google Scholar]
26. Serva, L.; Esposito, E.; Guerrieri, L.; Porfido, S.; Vittori, E.; Comerci, V. Environmental effects from five historical earthquakes in southern Apennines (Italy) and macroseismic intensity assessment: Contribution to INQUA EEE Scale Project. Quat. Int. 2007, 173–174, 30–44. [Google Scholar] [CrossRef]
27. Serva, L. The earthquake of June 5, 1688 in Campania. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 44–45. [Google Scholar]
28. Serva, L. The earthquake of September 8, 1694 in Campania- Lucania. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 50–51. [Google Scholar]
29. Esposito, E.; Luongo, G.; Marturano, A.; Porfido, S. Il terremoto di S. Anna del 26 Luglio 1805. Mem. Soc. Geol. Ital. 1987, 37, 171–191. [Google Scholar]
30. Spadea, M.C.; Vecchi, M.; Gardellini, P.; Del Mese, S. The Irpinia earthquake of July 23, 1930. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 136–137. [Google Scholar]
31. Quigley, M.C.; Hughes, M.W.; Bradley, B.A.; van Ballegooy, S.; Reid, C.; Morgenroth, J.; Pettinga, J.R. The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 2016, 672, 228–274. [Google Scholar] [CrossRef]
32. Porfido, S.; Alessio, G.; Gaudiosi, G.; Nappi, R.; Spiga, E. The resilience of some villages 36 years after the Irpinia-Basilicata (Southern Italy) 1980 earthquake. In Proceedings of the 4th World Landslide Forum, Ljubiana, Slovenia, 30 May–2 June 2017; pp. 121–133. [Google Scholar]
33. King, T.R.; Quigley, M.; Clark, D. Surface-rupturing historical earthquakes in Australia and their environmental effects: New insights from re-analyses of observational data. Geosciences 2019, 9, 408. [Google Scholar] [CrossRef]
34. Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, G.; Monachesi, G.; et al. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seism. Res. Lett. 2017, 88, 1–15. [Google Scholar] [CrossRef]
35. Shirahama, Y.; Yoshimi, M.; Awata, Y.; Maruyama, T.; Azuma, T.; Miyashita, Y.; Otsubo, M. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth Planets Space 2016, 68, 1–12. [Google Scholar] [CrossRef]
36. Hamling, I.J.; Hreinsdóttir, S.; Clark, K.; Elliott, J.; Liang, C.; Fielding, E.; D’Anastasio, E. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science 2017. [Google Scholar] [CrossRef] [PubMed]
37. DuRoss, C.B.; Gold, R.D.; Dawson, T.E.; Scharer, K.M.; Kendrick, K.J.; Akciz, S.O.; Blair, L. Surface Displacement Distributions for the July 2019 Ridgecrest, California, Earthquake Ruptures. Bull. Seism. Soc. Am. 2020, 1–19. [Google Scholar] [CrossRef]
38. Caputo, R. Ground effects of large morphogenic earthquakes. J. Geodyn. 2005, 40, 113–118. [Google Scholar] [CrossRef]
39. Hough, S.E. Earthquake intensity distributions: A new view. Bull. Earthq. Eng. 2014, 12, 135–155. [Google Scholar] [CrossRef]
40. Farabollini, P.; Angelini, S.; Fazzini, M.; Lugeri, F.R.; Scalella, G.; GeomorphoLab. La sequenza sismica dell’Italia centrale del 24 agosto e successive: Contributi alla conoscenza e la banca dati degli effetti di superficie. Rend. Online Soc. Geol. It. 2018, 46, 9–15. [Google Scholar] [CrossRef]
41. Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, N.; De Martini, P.M.; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.A.; et al. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci. Data 2018, 5, 180049. [Google Scholar] [CrossRef]
42. IAEA. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations; IAEA: Vienna, Austria, 2015; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1767_web.pdf (accessed on 28 July 2020).
43. Papanikolaou, I.; Melaki, M. The environmental seismic intensity scale (ESI 2007) in Greece, addition of new events and its relationship with magnitude in Greece and the Mediterranean; preliminary attenuation relationships. Quat. Int. 2017, 451, 37–55. [Google Scholar] [CrossRef]
44. Shebalin, N.V. Macroseismic data as information on source parameters of large earthquakes. Phys. Earth Planet. Int. 1973, 6, 316–323. [Google Scholar] [CrossRef]
45. Teramo, A.; Stillitani, E.; Bottari, A. On an Anisotropic Attenuation Law of the Macroseismic Intensity. Nat. Hazards 1995, 11, 203–221. [Google Scholar] [CrossRef]
]
2. Gaudiosi, G.; Nappi, R.; Alessio, G.; Porfido, S. Breve storia delle misurazioni dell’Intensità Macrosismica in Italia da Giuseppe Mercalli fino ai giorni nostri. Misc. INGV 2014, 24, 104–132, ISSN 2039–6651. [Google Scholar]
3. Grunthal, G. European Macroseismic Scale 1998 (EMS-98). In Cahiers du Centre Europeen de Geodynamique et de Seismologie; Centre Europeen de Geodynamique et de Seismologie: Walferdange, Luxembourg, 1998; Volume 15, p. 99. [Google Scholar]
4. Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J. Intensity scale ESI 2007. In Memorie Descrittive della Carta Geologica d’Italia; Guerrieri, L., Vittori, E., Eds.; Servizio Geologico d’Italia Dipartimento Difesa del Suolo (ISPRA): Rome, Italy, 2007. [Google Scholar]
5. Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake hazard and the environmental seismic intensity (ESI) scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
6. Ferrario, M.F.; Livio, F.; Capizzano, S.S.; Michetti, A.M. Developing the First Intensity Prediction Equation Based on the Environmental Scale Intensity: A Case Study from Strong Normal-Faulting Earthquakes in the Italian Apennines. Seismol. Res. Lett. 2020. [Google Scholar] [CrossRef]
7. Carrara, C.; Serva, L. Significato paleotettonico delle porzioni conglomeratiche di formazioni terrigene dell’Appennino meridionale. In Memorie della Società Geologica Italiana; Società geologica italiana: Roma, Italy, 1982; Volume 24, pp. 209–216. [Google Scholar]
8. Cinque, A.; Patacca, E.; Scandone, P.; Tozzi, M. Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Ann. Geophys. 1993, 36, 249–260. [Google Scholar]
9. Doglioni, C.; Harabaglia, P.; Martinelli, G.; Mongeli, F.; Zito, G. A geodynamic model of the Southern Appennines accretionary prism. Terra Nova 1996, 8, 540–547. [Google Scholar] [CrossRef]
10. Patacca, E.; Scandone, P. Geology of the Southern Apennines. Boll. Soc. Geol. It. 2007, 7, 75–119. [Google Scholar]
11. DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A Compilation of Potential Sources for Earthquakes Larger Than M 5.5 in Italy and Surrounding Areas. 2018. Available online: http://diss.rm.ingv.it/diss/ (accessed on 28 July 2020).
12. ITHACA Working Group. ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019. ISPRA Geological Survey of Italy. Available online: http://sgi2.isprambiente.it/ithacaweb/Mappatura.aspx (accessed on 28 July 2020).
13. Guidoboni, E.; Valensise, G. On the complexity of earthquake sequences: A historical seismology perspective based on the L’Aquila seismicity (Abruzzo, Central Italy), 1315–1915. Earthq. Struct. 2015, 8, 153–184. [Google Scholar] [CrossRef]
14. Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: https://doi.org/10.13127/CPTI/CPTI15.2 (accessed on 28 July 2020).
15. Serva, L. Criteri geologici per la valutazione della sismicità: Considerazioni e proposte. Atti Convegni Lincei-Accad. Naz. Lincei 1995, 122, 103–116. [Google Scholar]
16. Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Sci. Data 2019, 6, 80. [Google Scholar] [CrossRef]
17. Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Guerrieri, L.; Pece, R. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines (Italy). Ital. J. Geosci. 2007, 333–346. [Google Scholar]
18. Vilardo, G.; Nappi, R.; Petti, P.; Ventura, G. Fault geometries from the space distribution of the 1990–1997 Sannio-Benevento earthquakes: Inferences on the active deformation in Southern Apennines. Tectonophysics 2003, 363, 259–271. [Google Scholar] [CrossRef]
19. Di Bucci, D.; Massa, B.; Zuppetta, A. Relay ramps in active normal fault zones: A clu to the identification of seismogenic sources (1688 Sannio earthquake, Italy). Geol. Soc. Am. Bull. 2006, 118, 430–448. [Google Scholar] [CrossRef]
20. Nappi, R.; Alessio, G.; Bronzino, G.; Terranova, C.; Vilardo, G. Contribution of the SISCam Web-based GIS to the seismotectonic study of Campania (Southern Apennines): An example of application to the Sannio-area. Nat. Hazards 2007, 45, 73–85. [Google Scholar] [CrossRef]
21. Nappi, R.; Alessio, G. Integrated morphometric analysis in GIS environment applied to active tectonic areas. In Earthquake Research and Analysis—Seismology, Seismotectonic and Earthquake Geology; InTechOpen: London, UK, 2012; ISBN 978-953-307-991-2. [Google Scholar]
22. Blumetti, A.M.; Esposito, E.; Ferreli, L.; Michetti, A.M.; Porfido, S.; Serva, L.; Vittori, E. New data and reinterpretation of the November 23, 1980, M 6.9 Irpinia-Lucania earthquake (southern Apennines) coseismic surface effects. Stud. Geol. Camerti 2002. [Google Scholar] [CrossRef]
23. Pantosti, D.; Schwartz, D.P.; Valensise, G. Paleoseismology along the 1980 surface rupture of the Irpinia Fault: Implications for earthquake recurrence in the Southern Apennines, Italy. J. Geophys. Res. 1993, 98, 6561–6577. [Google Scholar] [CrossRef]
24. Westaway, R.; Jackson, J. Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature 1984, 312, 436–438. [Google Scholar] [CrossRef]
25. Esposito, E.; Porfido, S. Gli effetti cosismici sull’ambiente fisico per la valutazione della vulnerabilità del territorio. In Dalle Fonti all’Evento. Percorsi Strumenti e Metodi per L’analisi del Terremoto del 23 Luglio 1930 nell’Area del Vulture; Gizzi, F.T., Masini, N., Eds.; Edizioni Scientifiche Italiane: Naples, Italy, 2010; pp. 129–142. ISBN 978-88-495-2050-7. [Google Scholar]
26. Serva, L.; Esposito, E.; Guerrieri, L.; Porfido, S.; Vittori, E.; Comerci, V. Environmental effects from five historical earthquakes in southern Apennines (Italy) and macroseismic intensity assessment: Contribution to INQUA EEE Scale Project. Quat. Int. 2007, 173–174, 30–44. [Google Scholar] [CrossRef]
27. Serva, L. The earthquake of June 5, 1688 in Campania. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 44–45. [Google Scholar]
28. Serva, L. The earthquake of September 8, 1694 in Campania- Lucania. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 50–51. [Google Scholar]
29. Esposito, E.; Luongo, G.; Marturano, A.; Porfido, S. Il terremoto di S. Anna del 26 Luglio 1805. Mem. Soc. Geol. Ital. 1987, 37, 171–191. [Google Scholar]
30. Spadea, M.C.; Vecchi, M.; Gardellini, P.; Del Mese, S. The Irpinia earthquake of July 23, 1930. In Atlas of Isoseismal Maps of Italian Earthquakes; Postpischl, D., Ed.; Consiglio Nazionale Ricerche—Progetto Finalizzato Geodinamica: Roma, Italy, 1985; Volume 114, pp. 136–137. [Google Scholar]
31. Quigley, M.C.; Hughes, M.W.; Bradley, B.A.; van Ballegooy, S.; Reid, C.; Morgenroth, J.; Pettinga, J.R. The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 2016, 672, 228–274. [Google Scholar] [CrossRef]
32. Porfido, S.; Alessio, G.; Gaudiosi, G.; Nappi, R.; Spiga, E. The resilience of some villages 36 years after the Irpinia-Basilicata (Southern Italy) 1980 earthquake. In Proceedings of the 4th World Landslide Forum, Ljubiana, Slovenia, 30 May–2 June 2017; pp. 121–133. [Google Scholar]
33. King, T.R.; Quigley, M.; Clark, D. Surface-rupturing historical earthquakes in Australia and their environmental effects: New insights from re-analyses of observational data. Geosciences 2019, 9, 408. [Google Scholar] [CrossRef]
34. Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, G.; Monachesi, G.; et al. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seism. Res. Lett. 2017, 88, 1–15. [Google Scholar] [CrossRef]
35. Shirahama, Y.; Yoshimi, M.; Awata, Y.; Maruyama, T.; Azuma, T.; Miyashita, Y.; Otsubo, M. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan. Earth Planets Space 2016, 68, 1–12. [Google Scholar] [CrossRef]
36. Hamling, I.J.; Hreinsdóttir, S.; Clark, K.; Elliott, J.; Liang, C.; Fielding, E.; D’Anastasio, E. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science 2017. [Google Scholar] [CrossRef] [PubMed]
37. DuRoss, C.B.; Gold, R.D.; Dawson, T.E.; Scharer, K.M.; Kendrick, K.J.; Akciz, S.O.; Blair, L. Surface Displacement Distributions for the July 2019 Ridgecrest, California, Earthquake Ruptures. Bull. Seism. Soc. Am. 2020, 1–19. [Google Scholar] [CrossRef]
38. Caputo, R. Ground effects of large morphogenic earthquakes. J. Geodyn. 2005, 40, 113–118. [Google Scholar] [CrossRef]
39. Hough, S.E. Earthquake intensity distributions: A new view. Bull. Earthq. Eng. 2014, 12, 135–155. [Google Scholar] [CrossRef]
40. Farabollini, P.; Angelini, S.; Fazzini, M.; Lugeri, F.R.; Scalella, G.; GeomorphoLab. La sequenza sismica dell’Italia centrale del 24 agosto e successive: Contributi alla conoscenza e la banca dati degli effetti di superficie. Rend. Online Soc. Geol. It. 2018, 46, 9–15. [Google Scholar] [CrossRef]
41. Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, N.; De Martini, P.M.; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.A.; et al. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci. Data 2018, 5, 180049. [Google Scholar] [CrossRef]
42. IAEA. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations; IAEA: Vienna, Austria, 2015; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1767_web.pdf (accessed on 28 July 2020).
43. Papanikolaou, I.; Melaki, M. The environmental seismic intensity scale (ESI 2007) in Greece, addition of new events and its relationship with magnitude in Greece and the Mediterranean; preliminary attenuation relationships. Quat. Int. 2017, 451, 37–55. [Google Scholar] [CrossRef]
44. Shebalin, N.V. Macroseismic data as information on source parameters of large earthquakes. Phys. Earth Planet. Int. 1973, 6, 316–323. [Google Scholar] [CrossRef]
45. Teramo, A.; Stillitani, E.; Bottari, A. On an Anisotropic Attenuation Law of the Macroseismic Intensity. Nat. Hazards 1995, 11, 203–221. [Google Scholar] [CrossRef]
]
Type
article
File(s)
Loading...
Name
geosciences-10-00332-v2.pdf
Description
Assessment of the reliability of Earthquake Environmental Effects as indicators of the effects caused by past earthquake in the near field
Size
13.84 MB
Format
Adobe PDF
Checksum (MD5)
77250739c4602b0b509cb703c819d25e