Options
Hydrochemical, isotopic, and dissolved gas characterization of groundwater in Gariz aquifer, Southwest of Yazd Province, central Iran
Language
English
Obiettivo Specifico
1TR. Georisorse
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/418 (2021)
ISSN
0377-0273
Publisher
Elsevier
Pages (printed)
107324
Issued date
June 22, 2021
Subjects
03. Hydrosphere
Abstract
Here we discussed the results of the first geochemical investigation of the fluids (groundwater and the associated
gases) emerging in the southwest of Yazd Province. We carried out two surveys, one in July 2019 and the second
in September 2019s, in the region of the Gariz aquifer (central Iran).Wefocused our attention to 1) the chemistry
of thewater (major and minor constituents coupled to the stable isotopes of oxygen and hydrogen), 2) the chemical
composition of dissolved gases in water together with 3) the isotopic composition of Helium (3He/4He)
and 4) the dissolved carbon in water (δ13CTDIC). Hydrogen and oxygen isotope values of groundwater display a
fairly narrow range and indicate that the waters are of meteoric origin. On the base of the major ions chemistry,
the bulk of the water samples are classified as Ca-HCO3, Ca\\Cl and Na\\Cl types. The groundwater chemistry is
mainly influenced by the interaction with CO2-rich fluids, leakage of chlorinated saline water into the alluvial
aquifer, and silicate dissolution. High dissolved carbon contents, mainly as bicarbonate ion, reflect the noticeable
interaction of the groundwater with CO2-rich fluids. CO2 is the dominant gaseous component in most samples
and its amount is always greater with respect to a water in equilibrium with the atmosphere (Air Saturated
Water, ASW). Such excess of CO2 contents (more than 730 cc/l STP) dissolved in groundwater also supports
the presence of a deep source of CO2-rich gas. The computed δ13C(CO2) in equilibriumwith the groundwater highlight
a mixing in different proportion between an inorganic deep sourced CO2 (13C-enriched) and organic CO2
(13C-depleted). We also used the helium isotopes as a tools to figure out the origin of helium in the aquifer
(air vs. mantle, and crust). The collected samples show a contribution of mantle-derived He in the Gariz aquifer
up to (~45%) and the crust suggesting that at regional scale the tectonic discontinuities had a connectionwith the
mantle or magmatic intrusions migrated through the crust transporting mantle volatiles to shallowcrustal layers.
However, we cannot infer the timing of this possible magmatism at depth in the complex tectonic evolution of
the area.
gases) emerging in the southwest of Yazd Province. We carried out two surveys, one in July 2019 and the second
in September 2019s, in the region of the Gariz aquifer (central Iran).Wefocused our attention to 1) the chemistry
of thewater (major and minor constituents coupled to the stable isotopes of oxygen and hydrogen), 2) the chemical
composition of dissolved gases in water together with 3) the isotopic composition of Helium (3He/4He)
and 4) the dissolved carbon in water (δ13CTDIC). Hydrogen and oxygen isotope values of groundwater display a
fairly narrow range and indicate that the waters are of meteoric origin. On the base of the major ions chemistry,
the bulk of the water samples are classified as Ca-HCO3, Ca\\Cl and Na\\Cl types. The groundwater chemistry is
mainly influenced by the interaction with CO2-rich fluids, leakage of chlorinated saline water into the alluvial
aquifer, and silicate dissolution. High dissolved carbon contents, mainly as bicarbonate ion, reflect the noticeable
interaction of the groundwater with CO2-rich fluids. CO2 is the dominant gaseous component in most samples
and its amount is always greater with respect to a water in equilibrium with the atmosphere (Air Saturated
Water, ASW). Such excess of CO2 contents (more than 730 cc/l STP) dissolved in groundwater also supports
the presence of a deep source of CO2-rich gas. The computed δ13C(CO2) in equilibriumwith the groundwater highlight
a mixing in different proportion between an inorganic deep sourced CO2 (13C-enriched) and organic CO2
(13C-depleted). We also used the helium isotopes as a tools to figure out the origin of helium in the aquifer
(air vs. mantle, and crust). The collected samples show a contribution of mantle-derived He in the Gariz aquifer
up to (~45%) and the crust suggesting that at regional scale the tectonic discontinuities had a connectionwith the
mantle or magmatic intrusions migrated through the crust transporting mantle volatiles to shallowcrustal layers.
However, we cannot infer the timing of this possible magmatism at depth in the complex tectonic evolution of
the area.
Sponsors
Ministry of Science, Research and Technology of Iran
References
Afsari, N., Sodoudi, F., Farahmand, F.T., Ghassemi, M.R., 2011. Crustal structure of northwest
Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic
PS converted phases. J. Seismol. 15 (2), 341–353.
Alaminia, Z., Tadayon, M., Griffith, E.M., Solé, J., Corfu, F., 2021. Tectonic-controlled
sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment,
Komsheche, NE Isfahan, Central Iran. Chem. Geol. 566, 120084 URL. https://doi.org/
10.1016/j.chemgeo.2021.120084.
Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology 8 (3),
144–149.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations.
Tectonophysics 229 (3-4), 211–238. https://doi.org/10.1016/0040-1951(94)
90030-2.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its
proforeland evolution. Am. J. Sci. 304 (1), 1–20. https://doi.org/10.2475/ajs.304.1.1.
Apollaro, C., Caracausi, A., Paternoster,M., Randazzo, P., Aiuppa, A., De Rosa, R., ... Vanni, E.,
2020. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern
Apennines chain (Italy). J. Geochem. Explor. 219, 106618. https://doi.org/
10.1016/j.gexplo.2020.106618.
Babadi, M.F., Mehrabi, B., Tassi, F., Cabassi, J., Vaselli, O., Shakeri, A., ... Chaplygin, I., 2019.
Origin of fluids discharged from mud volcanoes in SE Iran. Mar. Pet. Geol. 106,
190–205. https://doi.org/10.1016/j.marpetgeo.2019.05.005.
Bafti, B.S., Niedermann, S., Sosnicka,M., Gleeson, S.A., 2021.Microthermometry and noble
gas isotope analysis of magmatic fluid inclusions in the Kerman porphyry Cu deposits,
Iran: constraints on the source of ore-forming fluids. Mineral. Deposita, 1–31
https://doi.org/10.1007/s00126-021-01041-8.
Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the
continental crust. Rev. Mineral. Geochem. 47 (1), 481–538. https://doi.org/10.2138/
rmg.2002.47.12.
Ballentine, C.J., Schoell, M., Coleman, D., Cain, B.A., 2001. 300-Myr-old magmatic CO2 in
natural gas reservoirs of theWest Texas Permian basin. Nature 409 (6818), 327–331.
Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and interaction
in the crust. Rev. Mineral. Geochem. 47 (1), 539–614. https://doi.org/10.2138/
rmg.2002.47.13.
Barnes, I., Irwin,W.P.,White, D.E., 1978. Global distribution of carbon dioxide discharges,
and major zones of seismicity. US Geological Survey, Water Resources Division. vol.
78.
Berberian, M., 1981. Active faulting and tectonics of Iran. Zagros Hindu Kush Himalaya
Geodynamic Evolution. 3 , pp. 33–69 URL. https://doi.org/10.1029/GD003p0033.
Berberian, F., Muir, I., Pankhurst, R., Berberian, M., 1982. Late Cretaceous and early
Miocene Andean-type plutonic activity in northern Makran and Central Iran.
J. Geol. Soc. 139 (5), 605–614. https://doi.org/10.1144/gsjgs.139.5.0605.
Burnard, P., Bourlange, S., Henry, P., Geli, L., Tryon, M., Natal'In, B., ... Çagatay, M., 2012.
Constraints on fluid origins and migration velocities along the Marmara Main Fault
(Sea of Marmara, Turkey) using helium isotopes. Earth Planet. Sci. Lett. 341, 68–78.
https://doi.org/10.1016/j.epsl.2012.05.042.
Capasso, G., Inguaggiato, S., 1998. A simple method for the determination of dissolved
gases in natural waters. An application to thermal waters from Vulcano Island.
Appl. Geochem. 13 (5), 631–642. https://doi.org/10.1016/S0883-2927(97)00109-1.
Capasso, G., D'Alessandro, W., Favara, R., Inguaggiato, S., Parello, F., 2001. Interaction between
the deep fluids and the shallow groundwaters on Vulcano Island (Italy).
J. Volcanol. Geotherm. Res. 108 (1-4), 187–198. https://doi.org/10.1016/S0377-0273
(00)00285-7.
Capasso, G., Favara, R., Grassa, F., Inguaggiato, S., Longo, M., 2005. On-line technique for
preparing and measuring stable carbon isotope of total dissolved inorganic carbon
in water samples (δ13CTDIC). Ann. Geophys. 48, 159–166.
Caracausi, A., Paternoster, M., 2015. Radiogenic helium degassing and rock fracturing: a
case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid
Earth 120, 2200–2211. https://doi.org/10.1002/2014JB011462.
Caracausi, A., Sulli, A., 2019. Outgassing of mantle volatiles in compressional tectonic regime
away from volcanism: the role of continental delamination. Geochem. Geophys.
Geosyst. 20 (4), 2007–2020. https://doi.org/10.1029/2018GC008046.
Caracausi, A., Favara, R., Italiano, F., Nuccio, P., Paonita, A., Rizzo, A., 2005. Active
geodynamics of the centralMediterranean Sea: Tensional tectonic evidences inwestern
Sicily from mantle-derived helium. Geophys. Res. Lett. 32 (4). https://doi.org/
10.1029/2004GL021608 URL.
Caracausi, A., Martelli, M., Nuccio, P., Paternoster, M., Stuart, F., 2013. Active degassing of
mantle-derived fluid: a geochemical study along the Vulture line, southern Apennines
(Italy). J. Volcanol. Geotherm. Res. 253, 65–74. https://doi.org/10.1016/j.
jvolgeores.2012.12.005.
Chaichi, Z., Haddadan, M., 2008. Geological Map of NIR, Scale: 1/100,000. Geological
Survey and Mineral Exploration of Iran.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011.
Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral
area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304 (3-4), 389–398.
https://doi.org/10.1016/j.epsl.2011.02.016.
Clark, I., 2015. Groundwater geochemistry and isotopes. CRC Press.
Clark, I.D., Fritz, P., 1997. Environmental isotopes in hydrogeology. CRC Press.
Craig, H., 1961. Isotopic variations in meteoric waters. Science 133 (3465), 1702–1703.
https://doi.org/10.1126/science.133.3465.1702.
D'Alessandro, W., De Gregorio, S., Dongarrà, G., Gurrieri, S., Parello, F., Parisi, B., 1997.
Chemical and isotopic characterization of the gases of Mount Etna (Italy).
J. Volcanol. Geotherm. Res. 78 (1-2), 65–76. https://doi.org/10.1016/S0377-0273
(97)00003-6.
Darling,W., Bath, A., Talbot, J., 2003. The O and H stable isotope composition of freshwaters
in the British Isles. 2. Surface waters and groundwater. Hydrol. Earth Syst. Sci. 7
(2), 183–195. https://doi.org/10.5194/hess-7-183-2003.
de Martonne, E., 1926. Une nouvelle function climatologique: L'indice d'aridité.
Meteorologie 2, 449–459.
Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence
of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim.
Acta 38 (7), 1147–1164. https://doi.org/10.1016/0016-7037(74)90010-6.
Delkhahi, B., Nassery, H.R., Vilarrasa, V., Alijani, F., Ayora, C., 2020. Impacts of natural CO2
leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. Int.
J. Greenhouse Gas Control 96, 103001. https://doi.org/10.1016/j.ijggc.2020.103001.
Dogramaci, S., Skrzypek, G., Dodson, W., Grierson, P.F., 2012. Stable isotope and
hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical
northwest Australia. J. Hydrol. 475, 281–293. https://doi.org/10.1016/j.
jhydrol.2012.10.004.
Emblanch, C., Zuppi, G., Mudry, J., Blavoux, B., Batiot, C., 2003. Carbon 13 of TDIC to quantify
the role of the unsaturated zone: the example of the Vaucluse karst systems
(Southeastern France). J. Hydrol. 279 (1-4), 262–274. https://doi.org/10.1016/
S0022-1694(03)00180-X.
Fan, Y., Pang, Z., Liao, D., Tian, J., Hao, Y., Huang, T., Li, Y., 2019. Hydrogeochemical Characteristics
and Genesis of GeothermalWater from the Ganzi Geothermal Field, Eastern
Tibetan Plateau. Water 11 (8), 1631. https://doi.org/10.3390/w11081631.
Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M.,
2002. Magma-derived gas influx and water-rock interactions in the volcanic aquifer
of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66 (6), 963–981. https://doi.org/
10.1016/S0016-7037(01)00813-4.
Fourré, E., Di Napoli, R., Aiuppa, A., Parello, F., Gaubi, E., Jean-Baptiste, P., ... Mamou, A.B.,
2011. Regional variations in the chemical and helium–carbon isotope composition
of geothermal fluids across Tunisia. Chem. Geol. 288 (1-2), 67–85. https://doi.org/
10.1016/j.chemgeo.2011.07.003.
Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., 2009. Carbon dioxide
degassing and thermal energy release in the Monte Amiata volcanic-geothermal
area (Italy). Appl. Geochem. 24 (5), 860–875. https://doi.org/10.1016/j.apgeochem.
2009.01.010.
Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2
consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159
(1-4), 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5.
Gat, J., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the
Mediterranean Sea area. J. Geophys. Res. 75 (15), 3039–3048. https://doi.org/
10.1029/JC075i015p03039.
Gautheron, C., Moreira, M., 2002. Helium signature of the subcontinental lithospheric
mantle. Earth Planet. Sci. Lett. 199 (1-2), 39–47. https://doi.org/10.1016/S0012-
821X(02)00563-0.
Giustini, F., Blessing, M., Brilli, M., Lombardi, S., Voltattorni, N., Widory, D., 2013. Determining
the origin of carbon dioxide and methane in the gaseous emissions of the
San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysis.
Appl. Geochem. 34, 90–101. https://doi.org/10.1016/j.apgeochem.2013.02.015.
Grassa, F., Capasso, G., Favara, R., Inguaggiato, S., 2006. Chemical and isotopic composition
of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic
islands, Italy. Pure Appl. Geophys. 163 (4), 781–807.
Heydarizad, M., Raeisi, E., Sorí, R., Gimeno, L., 2019. Developing Meteoric water lines for
iran based on air masses and moisture sources. Water 11 (11), 2359. https://doi.
org/10.3390/w11112359.
Inguaggiato, S., Pecoraino, G., D'amore, F., 2000. Chemical and isotopical characterisation
of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res. 99 (1-4),
151–178. https://doi.org/10.1016/S0377-0273(00)00158-X.
Inguaggiato, S., Martin-Del Pozzo, A., Aguayo, A., Capasso, G., Favara, R., 2005. Isotopic,
chemical and dissolved gas constraints on spring water from Popocatepetl volcano
(Mexico): evidence of gas–water interaction between magmatic component and
shallow fluids. J. Volcanol. Geotherm. Res. 141 (1-2), 91–108. https://doi.org/
10.1016/j.jvolgeores.2004.09.006.
Italiano, F., Martelli, M., Martinelli, G., Nuccio, P.M., 2000. Geochemical evidence of melt
intrusions along lithospheric faults of the Southern Apennines, Italy: geodynamic
and seismogenic implications. J. Geophys. Res. Solid Earth 105 (B6), 13569–13578.
https://doi.org/10.1029/2000JB900047.
Italiano, F., Bonfanti, P., Ditta, M., Petrini, R., Slejko, F., 2009. Heliumand carbon isotopes in
the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2 production
and degassing over a seismically active area. Chem. Geol. 266 (1-2), 76–85.
https://doi.org/10.1016/j.chemgeo.2009.05.022.
Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., ... Ali,
M.Y., 2021. Mantle-flow diversion beneath the Iranian plateau induced by Zagros'
lithospheric keel. Sci. Rep. 11 (1), 2848. https://doi.org/10.1038/s41598-021-
81541-9.
Kis, B.M., Caracausi, A., Palcsu, L., Baciu, C., Ionescu, A., Futó, I., ... Harangi, S., 2019. Noble
gas and carbon isotope systematics at the seemingly inactive Ciomadul volcano
(Eastern-Central Europe, Romania): evidence for volcanic degassing. Geochem.
Geophys. Geosyst. 20 (6), 3019–3043. https://doi.org/10.1029/2018GC008153.
Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal
processes governing the geochemistry of the crater fumaroles at Mount Etna
volcano (Italy). Chem. Geol. 278 (1-2), 92–104. https://doi.org/10.1016/j.chemgeo.
2010.09.004.
Mahmoodabadi, M., Yaminifard, F., Tatar, M., Kaviani, A., 2020. Shear wave velocity structure
of the upper-mantle beneath the northern Zagros collision zone revealed by
nonlinear teleseismic tomography and Bayesian Monte-Carlo joint inversion of surface
wave dispersion and teleseismic P-wave coda. Phys. Earth Planet. Inter. 300,
106444. https://doi.org/10.1016/j.pepi.2020.106444.
Marty, B., Jambon, A., 1987. C3 He in volatile fluxes from the solid Earth: implications for
carbon geodynamics. Earth Planet. Sci. Lett. 83 (1-4), 16–26. https://doi.org/10.1016/
0012-821X(87)90047-1.
Mook, W., Bommerson, J., Staverman, W., 1974. Carbon isotope fractionation between
dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22 (2),
169–176. https://doi.org/10.1016/0012-821X(74)90078-8.
Mörner, N.-A., Etiope, G., 2002. Carbon degassing from the lithosphere. Glob. Planet.
Chang. 33 (1-2), 185–203. https://doi.org/10.1016/S0921-8181(02)00070-X.
Muñoz-Montecinos, J., Angiboust, S., Garcia-Casco, A., Glodny, J., Bebout, G., 2021. Episodic
hydrofracturing and large-scale flushing along deep subduction interfaces: Implications
for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran).
Chem. Geol., 120173 https://doi.org/10.1016/j.chemgeo.2021.120173.
Mutlu, H., Güleç, N., Hilton, D.R., 2008. Helium–carbon relationships in geothermal fluids
of western Anatolia, Turkey. Chem. Geol. 247 (1–2), 305–321. https://doi.org/
10.1016/j.chemgeo.2007.10.021.
Nassery, H.R., Raei, M., 2013. Nature and source of gas specious in Gariz aquifer (Yazd,
Iran). 2nd International Conference on Hydrology & Groundwater Expo. DoubleTree
by Hilton, Raleigh, NC, USA, p. 54.
O’Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience 38 (5), 328–336.
O'nions, R., Oxburgh, E., 1988. Helium, volatile fluxes and the development of continental
crust. Earth Planet. Sci. Lett. 90 (3), 331–347. https://doi.org/10.1016/0012-821X(88)
90134-3.
Ozima, M., Podosek, F.A., 2002. Noble gas geochemistry. Cambridge University Press.
Parkhurst, D.L., Appelo, C., 1999. User’s guide to PHREEQC (Version 2): a computer program
for speciation, batch-reaction, one-dimensional transport, and inverse geochemical
calculations. Water Resour. Invest. Report 99 (4259), 312.
Paternoster, M., Oggiano, G., Sinisi, R., Caracausi, A., Mongelli, G., 2017. Geochemistry of
two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationshipswith
tectonics and heat sources. J. Volcanol. Geotherm. Res. 336, 108–117.
https://doi.org/10.1016/j.jvolgeores.2017.02.011.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar,M., Péquegnat, C., 2010. Seismic imaging of the lithospheric
structure of the Zagros mountain belt (Iran). Geol. Soc. Lond., Spec. Publ. 330
(1), 5–18. https://doi.org/10.1144/SP330.2.
Payehghadr, M., Eliasi, A., 2010. Chemical compositions of Persian Gulf water around the
Qeshm Island at various seasons. Asian J. Chem. 22 (7), 5282–5288.
Pineau, F., Shilobreeva, S., Hekinian, R., Bideau, D., Javoy, M., 2004. Deep-sea explosive
activity on the Mid-Atlantic Ridge near 34 50′ N: a stable isotope (C, H, O) study.
Chem. Geol. 211 (1-2), 159–175. https://doi.org/10.1016/j.chemgeo.2004.06.029.
Priestley, K., McKenzie, D., Barron, J., Tatar, M., Debayle, E., 2012. The Zagros core: deformation
of the continental lithospheric mantle. Geochem. Geophys. Geosyst. 13 (11).
https://doi.org/10.1029/2012GC004435.
Rueedi, J., Cronin, A., Taylor, R., Morris, B., 2007. Tracing sources of carbon in urban
groundwater using δ13C TDIC ratios. Environ. Geol. 52 (3), 541–557.
Sano, Y., Gamo, T., Williams, S.N., 1997. Secular variations of helium and carbon isotopes
at Galeras volcano, Colombia. J. Volcanol. Geotherm. Res. 77 (1–4), 255–265. https://
doi.org/10.1016/S0377-0273(96)00098-4.
Sano, Y., Takahata, N., Kagoshima, T., Shibata, T., Onoue, T., Zhao, D., 2016. Groundwater
helium anomaly reflects strain change during the 2016 Kumamoto earthquake in
Southwest Japan. Sci. Rep. Nat. 6, 37939. https://doi.org/10.1038/srep37939.
Scheffer, C., Tarantola, A., Vanderhaeghe, O., Rigaudier, T., Photiades, A., 2017. CO2
flow during orogenic gravitational collapse: Syntectonic decarbonation and fluid
mixing at the ductile-brittle transition (Lavrion, Greece). Chem. Geol. 450, 248–263.
https://doi.org/10.1016/j.chemgeo.2016.12.005.
Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore
deposits in Iran, NE of the Zagros thrust zone. J. Geodyn. 28 (2-3), 237–250. https://
doi.org/10.1016/S0264-3707(98)00040-4.
Spera, F., 1980. Thermal evolution of plutons: a parameterized approach. Science 18
(207), 299–301. https://doi.org/10.1126/science.207.4428.299.
Taghipour, N., Aftabi, A.,Mathur, R., 2008. Geology and Re-Os geocronology ofmineralization
of the Miduk porphyry copper deposit, Iran. Resour. Geol. 58 (2), 143–160.
https://doi.org/10.1111/j.1751-3928.2008.00054.x.
Venturi, S., Tassi, F., Bicocchi, G., Cabassi, J., Capecchiacci, F., Capasso, G., ... Grassa, F., 2017.
Fractionation processes affecting the stable carbon isotope signature of thermal waters
from hydrothermal/volcanic systems: the examples of Campi Flegrei and
Vulcano Island (southern Italy). J. Volcanol. Geotherm. Res. 345, 46–57. https://doi.
org/10.1016/j.jvolgeores.2017.08.001.
Yazd Meteorological Organization, 2014. Annual Data of Gariz Meteorological Station.
https://yazdmet.ir/.
Yong, L., Zhu, G., Wan, Q., Xu, Y., Zhang, Z., Sun, Z., ... Guo, H., 2020. The soil water evaporation
process from mountains based on the stable isotope composition in a headwater
basin and northwest China. Water 12 (10), 2711. https://doi.org/10.3390/
w12102711.
YRWC, 1994. Hydrogeology Survey Report of Aliabad-Ernan Yazd, Iran (In Persian).
Zelenski,M., Chaplygin, I., Babadi,M.F., Taran, Y., Campion, R.,Mehrabi, B., ... Pokrovsky, B.,
2020. Volcanic gas emissions from Taftan and Damavand, the Iranian volcanoes.
J. Volcanol. Geotherm. Res. 397, 106880. https://doi.org/10.1016/j.jvolgeores.2020.
106880.
Zhang, L., Guo, Z., Sano, Y., Zhang, M., Sun, Y., Cheng, Z., Yang, T.F., 2017. Flux and genesis
of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa
terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the
India-Asia continent subduction zone. J. Asian Earth Sci. 149, 110–123. https://doi.
org/10.1016/j.jseaes.2017.05.036.
Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic
PS converted phases. J. Seismol. 15 (2), 341–353.
Alaminia, Z., Tadayon, M., Griffith, E.M., Solé, J., Corfu, F., 2021. Tectonic-controlled
sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment,
Komsheche, NE Isfahan, Central Iran. Chem. Geol. 566, 120084 URL. https://doi.org/
10.1016/j.chemgeo.2021.120084.
Alavi, M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology 8 (3),
144–149.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations.
Tectonophysics 229 (3-4), 211–238. https://doi.org/10.1016/0040-1951(94)
90030-2.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its
proforeland evolution. Am. J. Sci. 304 (1), 1–20. https://doi.org/10.2475/ajs.304.1.1.
Apollaro, C., Caracausi, A., Paternoster,M., Randazzo, P., Aiuppa, A., De Rosa, R., ... Vanni, E.,
2020. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern
Apennines chain (Italy). J. Geochem. Explor. 219, 106618. https://doi.org/
10.1016/j.gexplo.2020.106618.
Babadi, M.F., Mehrabi, B., Tassi, F., Cabassi, J., Vaselli, O., Shakeri, A., ... Chaplygin, I., 2019.
Origin of fluids discharged from mud volcanoes in SE Iran. Mar. Pet. Geol. 106,
190–205. https://doi.org/10.1016/j.marpetgeo.2019.05.005.
Bafti, B.S., Niedermann, S., Sosnicka,M., Gleeson, S.A., 2021.Microthermometry and noble
gas isotope analysis of magmatic fluid inclusions in the Kerman porphyry Cu deposits,
Iran: constraints on the source of ore-forming fluids. Mineral. Deposita, 1–31
https://doi.org/10.1007/s00126-021-01041-8.
Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the
continental crust. Rev. Mineral. Geochem. 47 (1), 481–538. https://doi.org/10.2138/
rmg.2002.47.12.
Ballentine, C.J., Schoell, M., Coleman, D., Cain, B.A., 2001. 300-Myr-old magmatic CO2 in
natural gas reservoirs of theWest Texas Permian basin. Nature 409 (6818), 327–331.
Ballentine, C.J., Burgess, R., Marty, B., 2002. Tracing fluid origin, transport and interaction
in the crust. Rev. Mineral. Geochem. 47 (1), 539–614. https://doi.org/10.2138/
rmg.2002.47.13.
Barnes, I., Irwin,W.P.,White, D.E., 1978. Global distribution of carbon dioxide discharges,
and major zones of seismicity. US Geological Survey, Water Resources Division. vol.
78.
Berberian, M., 1981. Active faulting and tectonics of Iran. Zagros Hindu Kush Himalaya
Geodynamic Evolution. 3 , pp. 33–69 URL. https://doi.org/10.1029/GD003p0033.
Berberian, F., Muir, I., Pankhurst, R., Berberian, M., 1982. Late Cretaceous and early
Miocene Andean-type plutonic activity in northern Makran and Central Iran.
J. Geol. Soc. 139 (5), 605–614. https://doi.org/10.1144/gsjgs.139.5.0605.
Burnard, P., Bourlange, S., Henry, P., Geli, L., Tryon, M., Natal'In, B., ... Çagatay, M., 2012.
Constraints on fluid origins and migration velocities along the Marmara Main Fault
(Sea of Marmara, Turkey) using helium isotopes. Earth Planet. Sci. Lett. 341, 68–78.
https://doi.org/10.1016/j.epsl.2012.05.042.
Capasso, G., Inguaggiato, S., 1998. A simple method for the determination of dissolved
gases in natural waters. An application to thermal waters from Vulcano Island.
Appl. Geochem. 13 (5), 631–642. https://doi.org/10.1016/S0883-2927(97)00109-1.
Capasso, G., D'Alessandro, W., Favara, R., Inguaggiato, S., Parello, F., 2001. Interaction between
the deep fluids and the shallow groundwaters on Vulcano Island (Italy).
J. Volcanol. Geotherm. Res. 108 (1-4), 187–198. https://doi.org/10.1016/S0377-0273
(00)00285-7.
Capasso, G., Favara, R., Grassa, F., Inguaggiato, S., Longo, M., 2005. On-line technique for
preparing and measuring stable carbon isotope of total dissolved inorganic carbon
in water samples (δ13CTDIC). Ann. Geophys. 48, 159–166.
Caracausi, A., Paternoster, M., 2015. Radiogenic helium degassing and rock fracturing: a
case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid
Earth 120, 2200–2211. https://doi.org/10.1002/2014JB011462.
Caracausi, A., Sulli, A., 2019. Outgassing of mantle volatiles in compressional tectonic regime
away from volcanism: the role of continental delamination. Geochem. Geophys.
Geosyst. 20 (4), 2007–2020. https://doi.org/10.1029/2018GC008046.
Caracausi, A., Favara, R., Italiano, F., Nuccio, P., Paonita, A., Rizzo, A., 2005. Active
geodynamics of the centralMediterranean Sea: Tensional tectonic evidences inwestern
Sicily from mantle-derived helium. Geophys. Res. Lett. 32 (4). https://doi.org/
10.1029/2004GL021608 URL.
Caracausi, A., Martelli, M., Nuccio, P., Paternoster, M., Stuart, F., 2013. Active degassing of
mantle-derived fluid: a geochemical study along the Vulture line, southern Apennines
(Italy). J. Volcanol. Geotherm. Res. 253, 65–74. https://doi.org/10.1016/j.
jvolgeores.2012.12.005.
Chaichi, Z., Haddadan, M., 2008. Geological Map of NIR, Scale: 1/100,000. Geological
Survey and Mineral Exploration of Iran.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., Matteucci, F., 2011.
Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral
area of the Abruzzo 2009 earthquakes. Earth Planet. Sci. Lett. 304 (3-4), 389–398.
https://doi.org/10.1016/j.epsl.2011.02.016.
Clark, I., 2015. Groundwater geochemistry and isotopes. CRC Press.
Clark, I.D., Fritz, P., 1997. Environmental isotopes in hydrogeology. CRC Press.
Craig, H., 1961. Isotopic variations in meteoric waters. Science 133 (3465), 1702–1703.
https://doi.org/10.1126/science.133.3465.1702.
D'Alessandro, W., De Gregorio, S., Dongarrà, G., Gurrieri, S., Parello, F., Parisi, B., 1997.
Chemical and isotopic characterization of the gases of Mount Etna (Italy).
J. Volcanol. Geotherm. Res. 78 (1-2), 65–76. https://doi.org/10.1016/S0377-0273
(97)00003-6.
Darling,W., Bath, A., Talbot, J., 2003. The O and H stable isotope composition of freshwaters
in the British Isles. 2. Surface waters and groundwater. Hydrol. Earth Syst. Sci. 7
(2), 183–195. https://doi.org/10.5194/hess-7-183-2003.
de Martonne, E., 1926. Une nouvelle function climatologique: L'indice d'aridité.
Meteorologie 2, 449–459.
Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence
of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim.
Acta 38 (7), 1147–1164. https://doi.org/10.1016/0016-7037(74)90010-6.
Delkhahi, B., Nassery, H.R., Vilarrasa, V., Alijani, F., Ayora, C., 2020. Impacts of natural CO2
leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. Int.
J. Greenhouse Gas Control 96, 103001. https://doi.org/10.1016/j.ijggc.2020.103001.
Dogramaci, S., Skrzypek, G., Dodson, W., Grierson, P.F., 2012. Stable isotope and
hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical
northwest Australia. J. Hydrol. 475, 281–293. https://doi.org/10.1016/j.
jhydrol.2012.10.004.
Emblanch, C., Zuppi, G., Mudry, J., Blavoux, B., Batiot, C., 2003. Carbon 13 of TDIC to quantify
the role of the unsaturated zone: the example of the Vaucluse karst systems
(Southeastern France). J. Hydrol. 279 (1-4), 262–274. https://doi.org/10.1016/
S0022-1694(03)00180-X.
Fan, Y., Pang, Z., Liao, D., Tian, J., Hao, Y., Huang, T., Li, Y., 2019. Hydrogeochemical Characteristics
and Genesis of GeothermalWater from the Ganzi Geothermal Field, Eastern
Tibetan Plateau. Water 11 (8), 1631. https://doi.org/10.3390/w11081631.
Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M.,
2002. Magma-derived gas influx and water-rock interactions in the volcanic aquifer
of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66 (6), 963–981. https://doi.org/
10.1016/S0016-7037(01)00813-4.
Fourré, E., Di Napoli, R., Aiuppa, A., Parello, F., Gaubi, E., Jean-Baptiste, P., ... Mamou, A.B.,
2011. Regional variations in the chemical and helium–carbon isotope composition
of geothermal fluids across Tunisia. Chem. Geol. 288 (1-2), 67–85. https://doi.org/
10.1016/j.chemgeo.2011.07.003.
Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., 2009. Carbon dioxide
degassing and thermal energy release in the Monte Amiata volcanic-geothermal
area (Italy). Appl. Geochem. 24 (5), 860–875. https://doi.org/10.1016/j.apgeochem.
2009.01.010.
Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2
consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159
(1-4), 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5.
Gat, J., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the
Mediterranean Sea area. J. Geophys. Res. 75 (15), 3039–3048. https://doi.org/
10.1029/JC075i015p03039.
Gautheron, C., Moreira, M., 2002. Helium signature of the subcontinental lithospheric
mantle. Earth Planet. Sci. Lett. 199 (1-2), 39–47. https://doi.org/10.1016/S0012-
821X(02)00563-0.
Giustini, F., Blessing, M., Brilli, M., Lombardi, S., Voltattorni, N., Widory, D., 2013. Determining
the origin of carbon dioxide and methane in the gaseous emissions of the
San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysis.
Appl. Geochem. 34, 90–101. https://doi.org/10.1016/j.apgeochem.2013.02.015.
Grassa, F., Capasso, G., Favara, R., Inguaggiato, S., 2006. Chemical and isotopic composition
of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic
islands, Italy. Pure Appl. Geophys. 163 (4), 781–807.
Heydarizad, M., Raeisi, E., Sorí, R., Gimeno, L., 2019. Developing Meteoric water lines for
iran based on air masses and moisture sources. Water 11 (11), 2359. https://doi.
org/10.3390/w11112359.
Inguaggiato, S., Pecoraino, G., D'amore, F., 2000. Chemical and isotopical characterisation
of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res. 99 (1-4),
151–178. https://doi.org/10.1016/S0377-0273(00)00158-X.
Inguaggiato, S., Martin-Del Pozzo, A., Aguayo, A., Capasso, G., Favara, R., 2005. Isotopic,
chemical and dissolved gas constraints on spring water from Popocatepetl volcano
(Mexico): evidence of gas–water interaction between magmatic component and
shallow fluids. J. Volcanol. Geotherm. Res. 141 (1-2), 91–108. https://doi.org/
10.1016/j.jvolgeores.2004.09.006.
Italiano, F., Martelli, M., Martinelli, G., Nuccio, P.M., 2000. Geochemical evidence of melt
intrusions along lithospheric faults of the Southern Apennines, Italy: geodynamic
and seismogenic implications. J. Geophys. Res. Solid Earth 105 (B6), 13569–13578.
https://doi.org/10.1029/2000JB900047.
Italiano, F., Bonfanti, P., Ditta, M., Petrini, R., Slejko, F., 2009. Heliumand carbon isotopes in
the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2 production
and degassing over a seismically active area. Chem. Geol. 266 (1-2), 76–85.
https://doi.org/10.1016/j.chemgeo.2009.05.022.
Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., ... Ali,
M.Y., 2021. Mantle-flow diversion beneath the Iranian plateau induced by Zagros'
lithospheric keel. Sci. Rep. 11 (1), 2848. https://doi.org/10.1038/s41598-021-
81541-9.
Kis, B.M., Caracausi, A., Palcsu, L., Baciu, C., Ionescu, A., Futó, I., ... Harangi, S., 2019. Noble
gas and carbon isotope systematics at the seemingly inactive Ciomadul volcano
(Eastern-Central Europe, Romania): evidence for volcanic degassing. Geochem.
Geophys. Geosyst. 20 (6), 3019–3043. https://doi.org/10.1029/2018GC008153.
Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., Favara, R., 2010. Hydrothermal
processes governing the geochemistry of the crater fumaroles at Mount Etna
volcano (Italy). Chem. Geol. 278 (1-2), 92–104. https://doi.org/10.1016/j.chemgeo.
2010.09.004.
Mahmoodabadi, M., Yaminifard, F., Tatar, M., Kaviani, A., 2020. Shear wave velocity structure
of the upper-mantle beneath the northern Zagros collision zone revealed by
nonlinear teleseismic tomography and Bayesian Monte-Carlo joint inversion of surface
wave dispersion and teleseismic P-wave coda. Phys. Earth Planet. Inter. 300,
106444. https://doi.org/10.1016/j.pepi.2020.106444.
Marty, B., Jambon, A., 1987. C3 He in volatile fluxes from the solid Earth: implications for
carbon geodynamics. Earth Planet. Sci. Lett. 83 (1-4), 16–26. https://doi.org/10.1016/
0012-821X(87)90047-1.
Mook, W., Bommerson, J., Staverman, W., 1974. Carbon isotope fractionation between
dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22 (2),
169–176. https://doi.org/10.1016/0012-821X(74)90078-8.
Mörner, N.-A., Etiope, G., 2002. Carbon degassing from the lithosphere. Glob. Planet.
Chang. 33 (1-2), 185–203. https://doi.org/10.1016/S0921-8181(02)00070-X.
Muñoz-Montecinos, J., Angiboust, S., Garcia-Casco, A., Glodny, J., Bebout, G., 2021. Episodic
hydrofracturing and large-scale flushing along deep subduction interfaces: Implications
for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran).
Chem. Geol., 120173 https://doi.org/10.1016/j.chemgeo.2021.120173.
Mutlu, H., Güleç, N., Hilton, D.R., 2008. Helium–carbon relationships in geothermal fluids
of western Anatolia, Turkey. Chem. Geol. 247 (1–2), 305–321. https://doi.org/
10.1016/j.chemgeo.2007.10.021.
Nassery, H.R., Raei, M., 2013. Nature and source of gas specious in Gariz aquifer (Yazd,
Iran). 2nd International Conference on Hydrology & Groundwater Expo. DoubleTree
by Hilton, Raleigh, NC, USA, p. 54.
O’Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience 38 (5), 328–336.
O'nions, R., Oxburgh, E., 1988. Helium, volatile fluxes and the development of continental
crust. Earth Planet. Sci. Lett. 90 (3), 331–347. https://doi.org/10.1016/0012-821X(88)
90134-3.
Ozima, M., Podosek, F.A., 2002. Noble gas geochemistry. Cambridge University Press.
Parkhurst, D.L., Appelo, C., 1999. User’s guide to PHREEQC (Version 2): a computer program
for speciation, batch-reaction, one-dimensional transport, and inverse geochemical
calculations. Water Resour. Invest. Report 99 (4259), 312.
Paternoster, M., Oggiano, G., Sinisi, R., Caracausi, A., Mongelli, G., 2017. Geochemistry of
two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationshipswith
tectonics and heat sources. J. Volcanol. Geotherm. Res. 336, 108–117.
https://doi.org/10.1016/j.jvolgeores.2017.02.011.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar,M., Péquegnat, C., 2010. Seismic imaging of the lithospheric
structure of the Zagros mountain belt (Iran). Geol. Soc. Lond., Spec. Publ. 330
(1), 5–18. https://doi.org/10.1144/SP330.2.
Payehghadr, M., Eliasi, A., 2010. Chemical compositions of Persian Gulf water around the
Qeshm Island at various seasons. Asian J. Chem. 22 (7), 5282–5288.
Pineau, F., Shilobreeva, S., Hekinian, R., Bideau, D., Javoy, M., 2004. Deep-sea explosive
activity on the Mid-Atlantic Ridge near 34 50′ N: a stable isotope (C, H, O) study.
Chem. Geol. 211 (1-2), 159–175. https://doi.org/10.1016/j.chemgeo.2004.06.029.
Priestley, K., McKenzie, D., Barron, J., Tatar, M., Debayle, E., 2012. The Zagros core: deformation
of the continental lithospheric mantle. Geochem. Geophys. Geosyst. 13 (11).
https://doi.org/10.1029/2012GC004435.
Rueedi, J., Cronin, A., Taylor, R., Morris, B., 2007. Tracing sources of carbon in urban
groundwater using δ13C TDIC ratios. Environ. Geol. 52 (3), 541–557.
Sano, Y., Gamo, T., Williams, S.N., 1997. Secular variations of helium and carbon isotopes
at Galeras volcano, Colombia. J. Volcanol. Geotherm. Res. 77 (1–4), 255–265. https://
doi.org/10.1016/S0377-0273(96)00098-4.
Sano, Y., Takahata, N., Kagoshima, T., Shibata, T., Onoue, T., Zhao, D., 2016. Groundwater
helium anomaly reflects strain change during the 2016 Kumamoto earthquake in
Southwest Japan. Sci. Rep. Nat. 6, 37939. https://doi.org/10.1038/srep37939.
Scheffer, C., Tarantola, A., Vanderhaeghe, O., Rigaudier, T., Photiades, A., 2017. CO2
flow during orogenic gravitational collapse: Syntectonic decarbonation and fluid
mixing at the ductile-brittle transition (Lavrion, Greece). Chem. Geol. 450, 248–263.
https://doi.org/10.1016/j.chemgeo.2016.12.005.
Shahabpour, J., 1999. The role of deep structures in the distribution of some major ore
deposits in Iran, NE of the Zagros thrust zone. J. Geodyn. 28 (2-3), 237–250. https://
doi.org/10.1016/S0264-3707(98)00040-4.
Spera, F., 1980. Thermal evolution of plutons: a parameterized approach. Science 18
(207), 299–301. https://doi.org/10.1126/science.207.4428.299.
Taghipour, N., Aftabi, A.,Mathur, R., 2008. Geology and Re-Os geocronology ofmineralization
of the Miduk porphyry copper deposit, Iran. Resour. Geol. 58 (2), 143–160.
https://doi.org/10.1111/j.1751-3928.2008.00054.x.
Venturi, S., Tassi, F., Bicocchi, G., Cabassi, J., Capecchiacci, F., Capasso, G., ... Grassa, F., 2017.
Fractionation processes affecting the stable carbon isotope signature of thermal waters
from hydrothermal/volcanic systems: the examples of Campi Flegrei and
Vulcano Island (southern Italy). J. Volcanol. Geotherm. Res. 345, 46–57. https://doi.
org/10.1016/j.jvolgeores.2017.08.001.
Yazd Meteorological Organization, 2014. Annual Data of Gariz Meteorological Station.
https://yazdmet.ir/.
Yong, L., Zhu, G., Wan, Q., Xu, Y., Zhang, Z., Sun, Z., ... Guo, H., 2020. The soil water evaporation
process from mountains based on the stable isotope composition in a headwater
basin and northwest China. Water 12 (10), 2711. https://doi.org/10.3390/
w12102711.
YRWC, 1994. Hydrogeology Survey Report of Aliabad-Ernan Yazd, Iran (In Persian).
Zelenski,M., Chaplygin, I., Babadi,M.F., Taran, Y., Campion, R.,Mehrabi, B., ... Pokrovsky, B.,
2020. Volcanic gas emissions from Taftan and Damavand, the Iranian volcanoes.
J. Volcanol. Geotherm. Res. 397, 106880. https://doi.org/10.1016/j.jvolgeores.2020.
106880.
Zhang, L., Guo, Z., Sano, Y., Zhang, M., Sun, Y., Cheng, Z., Yang, T.F., 2017. Flux and genesis
of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa
terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the
India-Asia continent subduction zone. J. Asian Earth Sci. 149, 110–123. https://doi.
org/10.1016/j.jseaes.2017.05.036.
Type
article
File(s)
No Thumbnail Available
Name
1-s2.0-S0377027321001530-main (1).pdf
Description
restricted paper
Size
6.21 MB
Format
Adobe PDF
Checksum (MD5)
5afd9054e7d16becab05ab1b53d83d23
No Thumbnail Available
Name
Manuscript File_Rev2_20210610_DEF.docx
Description
Open Access Accepted manuscript (emb oct 23)
Size
10.41 MB
Format
Microsoft Word XML
Checksum (MD5)
86c7fa386e27d0e6d7b1db1254fe74a2