Options
Insights on the kinematics of deep-seated gravitational slope deformations along the 1915 Avezzano earthquake fault (Central Italy), from time-series DInSAR
Author(s)
Language
English
Obiettivo Specifico
1.10. TTC - Telerilevamento
Status
Published
JCR Journal
JCR Journal
Title of the book
Issue/vol(year)
/112 (2009)
Publisher
Elsevier
Pages (printed)
261-276
Issued date
2009
Keywords
Abstract
Among the causes of deep-seated gravitational slope deformations (DGSD), the most important is relief
energy, which is closely related to the intensity of the active tectonic deformations, either at the regional
scale or at the scale of a single active fault. We analyzed some examples of DGSD from the Eastern border of
the Fucino basin, in the Central Apennines, where extensional tectonics has been active since the late
Pliocene. Photogeological and field geomorphological analysis was performed to identify landforms typically
associated with DGSD, such as counterslope scarps, double crests, trenches, and bulging slopes. These
features are located on a mountain range at less than 1 km from the causative fault of the 1915 Avezzano
earthquake.
We used the SBAS Differential SAR Interferometry technique to measure the slow movements of the surface,
and calculated differential vertical and horizontal ground velocities of 2–4 mm yr−1 during the period
spanning from 1992 to 2001. The quantitative information on the kinematics of the deformation provided
some inferences on the different processes responsible for the evolution of the observed DGSD. The
displacement time series shows non-linear deformation trends at some locations, possibly correlated with a
strong meteorological event. We speculate that DGSD in this area are normally subject to slow deformation,
and that sudden slip along sliding surfaces (observed in excavations) may sporadically be triggered off by
extreme meteorological or seismic events. Evidence of catastrophic collapse of previous DGSD along the
same mountain slope reinforce this hypothesis.
energy, which is closely related to the intensity of the active tectonic deformations, either at the regional
scale or at the scale of a single active fault. We analyzed some examples of DGSD from the Eastern border of
the Fucino basin, in the Central Apennines, where extensional tectonics has been active since the late
Pliocene. Photogeological and field geomorphological analysis was performed to identify landforms typically
associated with DGSD, such as counterslope scarps, double crests, trenches, and bulging slopes. These
features are located on a mountain range at less than 1 km from the causative fault of the 1915 Avezzano
earthquake.
We used the SBAS Differential SAR Interferometry technique to measure the slow movements of the surface,
and calculated differential vertical and horizontal ground velocities of 2–4 mm yr−1 during the period
spanning from 1992 to 2001. The quantitative information on the kinematics of the deformation provided
some inferences on the different processes responsible for the evolution of the observed DGSD. The
displacement time series shows non-linear deformation trends at some locations, possibly correlated with a
strong meteorological event. We speculate that DGSD in this area are normally subject to slow deformation,
and that sudden slip along sliding surfaces (observed in excavations) may sporadically be triggered off by
extreme meteorological or seismic events. Evidence of catastrophic collapse of previous DGSD along the
same mountain slope reinforce this hypothesis.
References
Agliardi, F., Crosta, G., Zanchi, A., 2001. Structural constraints on deep-seated slope
deformation kinematics. Eng. Geol. 59, 83–102.
Agnesi, V., Macaluso, T., Monteleone, S., Pipitone, G., SorrisoValvo, M., 1978. Tipi e
dinamica delle deformazioni gravitative profonde in relazione alle strutture
geologiche. I casi di Monte Genuardo e di Scodello (Sicilia occidentale). Boll. Soc.
Geol. Ital. 108, 379–389.
Amoruso, A., Crescentini, L., Scarpa, R., 1998. Inversion of source parameters from nearand
far-field observations: an application to the 1915 Fucino earthquakes, central
Apennines, Italy. J. Geophys. Res. 103, 29,989–29,999.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface
deformation monitoring based on small baseline differential SAR interferograms.
IEEE Trans. Geosci. Remote Sens. 40, 2375-238.
Bϋrgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry to
measure Earth's surface topography and its deformation. Annu. Rev. Earth Planet.
Sci. 28, 169–209.
Casu, F., Manzo, M., Lanari, R., 2006. A quantitative assessment of the SBAS algorithm
performance for surface deformation retrieval from DInSAR data. Remote Sens.
Environ. 102, 195–210.
Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E., Piacentini, T., 2002. Sedimentary and
tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino
basin (central Italy). Sediment. Geol. 148, 29–59.
Cendrero, A., Dramis, F., 1996. The contribution of landslides to landscape evolution in
Europe. Geomorphology 15, 191–211.
Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity
of an active normal fault system: the 1997 Colfiorito (central Italy) case study.
J. Geophys. Res. 108, 2294.
Cipollari, P., Cosentino, D., Gliozzi, E., 1999. Extension and compression related basins in
central Italy during the Messinian Lago-Mare event. Tectonophysics 315, 163–185.
Cruden, D.M., Varnes, D.J., 1996. Landslides types and processes. In: Turner, A.K.,
Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, vol. 247. Transportation
Research Board, National Academy of Sciences, Washington D.C., pp. 36–75.
Special Report.
D'Agostino, N., Giuliani, R., Mattone, M., Bonci, L., 2001. Active crustal extension in the
central Apennines (Italy) inferred from GPS measurements in the interval 1994–
1999. Geophys. Res. Lett. 28, 2121.
Doglioni, C., 1995. Geological remarks on the relationships between extension and
convergent geodynamic settings. Tectonophysics 252, 253–267.
Dramis, F., Sorriso-Valvo, M., 1994. Deep-seated gravitational slope deformations,
related landslide and tectonics. Eng. Geol. 38, 231–243.
Dramis, F., Farabollini, P., Gentili, B., Pambianchi, G., 1995. Neotectonics and large-scale
gravitational phenomena in the Umbria–Marche Apennines, Italy. In: S laymaker, O.
(Ed.), Steepland Geomorphology. J. Wiley & Sons Ltd., pp. 199–217.
Finnegan, N.J., Pritchard, M.E., Lohman, R.B., Lundgren, P.R., 2008. Constraints on surface
deformation in the Seattle, WA urban corridor from satellite radar interferometry
time series analysis, Geophys. J. Int. 174, 29–41.
Forlati, F., Gioda, G., Scavia, C., 2001. Finite element analysis of a deep-seated slope
deformation. Rock Mech. Rock Eng. 34, 135–159.
Galadini, F., 2006. Quaternary tectonics and large-scale gravitational deformations with
evidence of rock-slide displacements in the Central Apennines (central Italy).
Geomorphology 82, 201–228.
Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes on the 1915 Avezzano
earthquake faults (central Italy): implications for active tectonics in central
Apennines. Tectonophysics 308, 143–170.
Galadini, F., Messina, P., 1994. Plio-Quaternary tectonics of the Fucino basin and
surrounding areas (central Italy). G. Geol. 56, 73–99.
Galadini, F., Galli, P., 2000. Active tectonics in the central Apennines (Italy) — input data
for seismic hazard assessment. Nat. Hazards 22, 225–270.
Galadini, F., Galli, P., Giraudi, C., Molin, D., 1995. Il terremoto del 1915 e la sismicita` della
Piana del Fucino (Italia centrale). Boll. Soc. Geol. Ital. 114, 635–663.
Galadini, F., Galli, P., Giraudi, C., 1997. Paleosismologia della Piana del Fucino (Italia
centrale). Il Quaternario 10, 27–64.
Giraudi, C., 1988. Evoluzione geologica della Piana del Fucino (Abruzzo) negli ultimi
30.000 anni. Il Quaternario 1, 131–159.
González-Díez, A., Remondo, J., Díaz de Terán, J., Cendrero, A., 1999. A methodological
approach for the analysis of the temporal occurrence and triggering factors of
landslides. Geomorphology 30, 95–113.
Gullà, G., Sorriso-Valvo, M., 1985. Deep-seated block slides and lateral spreads in
Calabria. Intern. Symposium on Erosion, Flow and Disaster Prevention, Sept. 3–5,
1985, Tsukuba, Japan, pp. 311–316.
Hanssen, R., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer
Acad., Netherlands.
Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R.W., 2001. Influence of surfacenormal
ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide
during the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 91, 953–958.
Hutchinson, J.N., 1988. General report: morphological and geotechnical parameters of
landslides in relation to geology and hydrogeology. Proc. 5th Int Symp. On
Landslides, Lausanne, vol. 1. A.A. Balkema, CH, pp. 3–35.
Kilburn, C.R.J., Petley, D.N., 2003. Forecasting giant, catastrophic slope collapse: lessons
from Vajont, Northern Italy. Geomorphology 54, 21–32.
Lanari, R., Lundgren, P., Manzo, M., Casu, F., 2004. Satellite radar interferometry time
series analysis of surface deformation for LoS Angeles, California. Geophys. Res. Lett.
31, L23613.
Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian sea and shortening in
the Apennines as result of arc migration driven by sinking of the lithosphere.
Tectonics 5, 227–245.
Mariucci, M.T., Amato, A., Montone, P., 1999. Recent tectonic evolution and present
stress in the northern Apennines (Italy). Tectonics 18, 108–118.Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in
the earth's surface. Rev. Geophys. 36, 441–500.
Meletti, C., Patacca, E., Scandone, P., 1995. Il sistema compressione distensione in
Appennino. In: Bonardi, G., De Vivo, B., Gasparini, P., Vallario, A. (Eds.), Cinquanta
Anni di Attività Didattica e Scientifica del Prof. Felice Ippolito, Naples, pp. 361–370.
Meletti, C., Patacca, E., Scandone, P., 2000. Construction of a seismotectonic model: the
case of Italy. Pure Appl. Geophys. 157, 11–35.
Moro, M., 2007. Indagini geologiche e geofisiche applicate allo studio delle relazioni
geometriche e cinematiche tra faglie attive e deformazioni gravitative profonde di
versante (DGPV). Ph.D. Thesis, Università degli Studi di Roma “La Sapienza”.
Moro, M., Saroli, M., Salvi, S., Stramondo, S., Doumaz, F., 2007. The relationship between
seismic deformation and deep-seated gravitational movements during the 1997
Umbria–Marche (Central Italy) earthquakes. Geomorphology 89, 297–307.
Oddone, E., 1915. Gli elementi fisici del grande terremoto marsicano - fucense del 13
gennaio 1915. Boll. Soc. Sismol. Ital. 19, 71–216.
Onida, M., 2001. Deformazioni gravitative profonde: stato delle conoscenze e progresso
delle ricerche in Italia. In: Pasquarè, G. (Ed.), Tettonica recente e instabilità di
versante nelle Alpi centrali. CNR, Istituto per la Dinamica dei Processi Ambientali,
Milano, Italy, pp. 35–74.
Patacca, E., Scandone, P., 2001. Late thrust propagation and sedimentary response in the
thrust-belt-foredeep system of the southern Apennines (Pliocene–Pleistocene). In:
Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent
Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 401–440.
Patacca, E., Sartori, R., Scandone, P., 1990. Tyrrhenian basin and apenninic arcs:
kinematic relations since Late Tortonian times. Mem. Soc. Geol. It. 45, 425–451.
Radbruch-Hall, D., Varnes, D.J., Savage,W.Z.,1976. Gravitational spreading of steep-sides
ridges (“Sackung”) in Western United States. IAEG Bull. 14, 23–35.
Radbruch-Hall, D., Varnes, D.J., Colton, R.B., 1977. Gravitational spreading of steep-sided
ridges (“Sackung”) in Colorado. J. Res. U.S. Geol. Surv. 5, 359–363.
Royden, L., Patacca, E., Scandone, P., 1987. Segmentation and configuration of subducted
lithosphere in Italy: an important control on thrust-belt and foredeep-basin
evolution. Geology 15, 714–717.
Salvi, S., Cinti, F.R., Colini, L., D'Addezio, G., Doumaz, F., Pettinelli, E., 2003. Investigation
of the active Celano-L'Aquila fault system, Abruzzi (central Apennines, Italy) with
combined ground-penetrating radar and palaeoseismic trenching. Geophys. J. Int.
155, 805–818.
Saroli, M., Stramondo, S., Moro, M., Doumaz, F., 2005. Movements detection of Deep
Seated Gravitational Deformations by means of InSAR data and Photogeological
interpretation: northern Sicily case study. Terranova 17, 35–43.
Savage, W.Z., Varnes, D.J., 1987. Mechanics of gravitational spreading of steep-sides
ridges (sacking). IAEG Bull. 35, 31–36.
Sirangelo, B., Braca, G., 2004. Identification of hazard conditions for mudflow
occurrence by hydrological model. Application of FLaIR model to Sarno warning
system. Eng. Geol. 73, 267–276.
Sorriso-Valvo, M., 1995. Considerazioni sul limite tra deformazione gravitativi profonda
di versante e frana. Mem. Soc. Geol. Ital. 50, 179–185.
Ter Stepanian, G., 1966. Type of depth creep of slopes in rock masses. Probl. Geomeh. 3,
49–69.
Tibaldi, A., Rovida, A., Corazzato, C., 2004. A giant deep-seated slope deformation in the
Italian Alps studied by paleoseismological and morphometric techniques. Geomorphology
58, 27–47.
Varnes, D.J., Radbruch-Hall, D., Savage, W.Z., 1989. Topographic and structural
conditions in area of gravitational spreading of ridges in the western United States.
U.S. Geol. Surv. Prof. Paper 1496, 1–28.
VELISAR Working Group, 2006. Ground velocity maps of Italian seismogenic areas.
http://kharita.rm.ingv.it/gmaps/vel, Istituto Nazionale di Geofisica e Vulcanologia —
Rome, Italy.
Wright, T.J., Parsons, B.E., Lu, Z., 2004. Toward mapping surface deformation in three
dimensions using InSAR.Geophys. Res. Lett. 31 (1), L01607. doi:10.1029/2003GL018827.
Zischinsky, U., 1966. On the deformation of high slopes. Proc. Ist Conf. Int. Soc. Rock
Mech., Lisbon, Sect., vol. 2, pp. 179–185.
Zischinsky, U., 1969. Uber Sackungen. Rock Mech. I, 30–52.
deformation kinematics. Eng. Geol. 59, 83–102.
Agnesi, V., Macaluso, T., Monteleone, S., Pipitone, G., SorrisoValvo, M., 1978. Tipi e
dinamica delle deformazioni gravitative profonde in relazione alle strutture
geologiche. I casi di Monte Genuardo e di Scodello (Sicilia occidentale). Boll. Soc.
Geol. Ital. 108, 379–389.
Amoruso, A., Crescentini, L., Scarpa, R., 1998. Inversion of source parameters from nearand
far-field observations: an application to the 1915 Fucino earthquakes, central
Apennines, Italy. J. Geophys. Res. 103, 29,989–29,999.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface
deformation monitoring based on small baseline differential SAR interferograms.
IEEE Trans. Geosci. Remote Sens. 40, 2375-238.
Bϋrgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry to
measure Earth's surface topography and its deformation. Annu. Rev. Earth Planet.
Sci. 28, 169–209.
Casu, F., Manzo, M., Lanari, R., 2006. A quantitative assessment of the SBAS algorithm
performance for surface deformation retrieval from DInSAR data. Remote Sens.
Environ. 102, 195–210.
Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E., Piacentini, T., 2002. Sedimentary and
tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino
basin (central Italy). Sediment. Geol. 148, 29–59.
Cendrero, A., Dramis, F., 1996. The contribution of landslides to landscape evolution in
Europe. Geomorphology 15, 191–211.
Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity
of an active normal fault system: the 1997 Colfiorito (central Italy) case study.
J. Geophys. Res. 108, 2294.
Cipollari, P., Cosentino, D., Gliozzi, E., 1999. Extension and compression related basins in
central Italy during the Messinian Lago-Mare event. Tectonophysics 315, 163–185.
Cruden, D.M., Varnes, D.J., 1996. Landslides types and processes. In: Turner, A.K.,
Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, vol. 247. Transportation
Research Board, National Academy of Sciences, Washington D.C., pp. 36–75.
Special Report.
D'Agostino, N., Giuliani, R., Mattone, M., Bonci, L., 2001. Active crustal extension in the
central Apennines (Italy) inferred from GPS measurements in the interval 1994–
1999. Geophys. Res. Lett. 28, 2121.
Doglioni, C., 1995. Geological remarks on the relationships between extension and
convergent geodynamic settings. Tectonophysics 252, 253–267.
Dramis, F., Sorriso-Valvo, M., 1994. Deep-seated gravitational slope deformations,
related landslide and tectonics. Eng. Geol. 38, 231–243.
Dramis, F., Farabollini, P., Gentili, B., Pambianchi, G., 1995. Neotectonics and large-scale
gravitational phenomena in the Umbria–Marche Apennines, Italy. In: S laymaker, O.
(Ed.), Steepland Geomorphology. J. Wiley & Sons Ltd., pp. 199–217.
Finnegan, N.J., Pritchard, M.E., Lohman, R.B., Lundgren, P.R., 2008. Constraints on surface
deformation in the Seattle, WA urban corridor from satellite radar interferometry
time series analysis, Geophys. J. Int. 174, 29–41.
Forlati, F., Gioda, G., Scavia, C., 2001. Finite element analysis of a deep-seated slope
deformation. Rock Mech. Rock Eng. 34, 135–159.
Galadini, F., 2006. Quaternary tectonics and large-scale gravitational deformations with
evidence of rock-slide displacements in the Central Apennines (central Italy).
Geomorphology 82, 201–228.
Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes on the 1915 Avezzano
earthquake faults (central Italy): implications for active tectonics in central
Apennines. Tectonophysics 308, 143–170.
Galadini, F., Messina, P., 1994. Plio-Quaternary tectonics of the Fucino basin and
surrounding areas (central Italy). G. Geol. 56, 73–99.
Galadini, F., Galli, P., 2000. Active tectonics in the central Apennines (Italy) — input data
for seismic hazard assessment. Nat. Hazards 22, 225–270.
Galadini, F., Galli, P., Giraudi, C., Molin, D., 1995. Il terremoto del 1915 e la sismicita` della
Piana del Fucino (Italia centrale). Boll. Soc. Geol. Ital. 114, 635–663.
Galadini, F., Galli, P., Giraudi, C., 1997. Paleosismologia della Piana del Fucino (Italia
centrale). Il Quaternario 10, 27–64.
Giraudi, C., 1988. Evoluzione geologica della Piana del Fucino (Abruzzo) negli ultimi
30.000 anni. Il Quaternario 1, 131–159.
González-Díez, A., Remondo, J., Díaz de Terán, J., Cendrero, A., 1999. A methodological
approach for the analysis of the temporal occurrence and triggering factors of
landslides. Geomorphology 30, 95–113.
Gullà, G., Sorriso-Valvo, M., 1985. Deep-seated block slides and lateral spreads in
Calabria. Intern. Symposium on Erosion, Flow and Disaster Prevention, Sept. 3–5,
1985, Tsukuba, Japan, pp. 311–316.
Hanssen, R., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer
Acad., Netherlands.
Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R.W., 2001. Influence of surfacenormal
ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide
during the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 91, 953–958.
Hutchinson, J.N., 1988. General report: morphological and geotechnical parameters of
landslides in relation to geology and hydrogeology. Proc. 5th Int Symp. On
Landslides, Lausanne, vol. 1. A.A. Balkema, CH, pp. 3–35.
Kilburn, C.R.J., Petley, D.N., 2003. Forecasting giant, catastrophic slope collapse: lessons
from Vajont, Northern Italy. Geomorphology 54, 21–32.
Lanari, R., Lundgren, P., Manzo, M., Casu, F., 2004. Satellite radar interferometry time
series analysis of surface deformation for LoS Angeles, California. Geophys. Res. Lett.
31, L23613.
Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian sea and shortening in
the Apennines as result of arc migration driven by sinking of the lithosphere.
Tectonics 5, 227–245.
Mariucci, M.T., Amato, A., Montone, P., 1999. Recent tectonic evolution and present
stress in the northern Apennines (Italy). Tectonics 18, 108–118.Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in
the earth's surface. Rev. Geophys. 36, 441–500.
Meletti, C., Patacca, E., Scandone, P., 1995. Il sistema compressione distensione in
Appennino. In: Bonardi, G., De Vivo, B., Gasparini, P., Vallario, A. (Eds.), Cinquanta
Anni di Attività Didattica e Scientifica del Prof. Felice Ippolito, Naples, pp. 361–370.
Meletti, C., Patacca, E., Scandone, P., 2000. Construction of a seismotectonic model: the
case of Italy. Pure Appl. Geophys. 157, 11–35.
Moro, M., 2007. Indagini geologiche e geofisiche applicate allo studio delle relazioni
geometriche e cinematiche tra faglie attive e deformazioni gravitative profonde di
versante (DGPV). Ph.D. Thesis, Università degli Studi di Roma “La Sapienza”.
Moro, M., Saroli, M., Salvi, S., Stramondo, S., Doumaz, F., 2007. The relationship between
seismic deformation and deep-seated gravitational movements during the 1997
Umbria–Marche (Central Italy) earthquakes. Geomorphology 89, 297–307.
Oddone, E., 1915. Gli elementi fisici del grande terremoto marsicano - fucense del 13
gennaio 1915. Boll. Soc. Sismol. Ital. 19, 71–216.
Onida, M., 2001. Deformazioni gravitative profonde: stato delle conoscenze e progresso
delle ricerche in Italia. In: Pasquarè, G. (Ed.), Tettonica recente e instabilità di
versante nelle Alpi centrali. CNR, Istituto per la Dinamica dei Processi Ambientali,
Milano, Italy, pp. 35–74.
Patacca, E., Scandone, P., 2001. Late thrust propagation and sedimentary response in the
thrust-belt-foredeep system of the southern Apennines (Pliocene–Pleistocene). In:
Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent
Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 401–440.
Patacca, E., Sartori, R., Scandone, P., 1990. Tyrrhenian basin and apenninic arcs:
kinematic relations since Late Tortonian times. Mem. Soc. Geol. It. 45, 425–451.
Radbruch-Hall, D., Varnes, D.J., Savage,W.Z.,1976. Gravitational spreading of steep-sides
ridges (“Sackung”) in Western United States. IAEG Bull. 14, 23–35.
Radbruch-Hall, D., Varnes, D.J., Colton, R.B., 1977. Gravitational spreading of steep-sided
ridges (“Sackung”) in Colorado. J. Res. U.S. Geol. Surv. 5, 359–363.
Royden, L., Patacca, E., Scandone, P., 1987. Segmentation and configuration of subducted
lithosphere in Italy: an important control on thrust-belt and foredeep-basin
evolution. Geology 15, 714–717.
Salvi, S., Cinti, F.R., Colini, L., D'Addezio, G., Doumaz, F., Pettinelli, E., 2003. Investigation
of the active Celano-L'Aquila fault system, Abruzzi (central Apennines, Italy) with
combined ground-penetrating radar and palaeoseismic trenching. Geophys. J. Int.
155, 805–818.
Saroli, M., Stramondo, S., Moro, M., Doumaz, F., 2005. Movements detection of Deep
Seated Gravitational Deformations by means of InSAR data and Photogeological
interpretation: northern Sicily case study. Terranova 17, 35–43.
Savage, W.Z., Varnes, D.J., 1987. Mechanics of gravitational spreading of steep-sides
ridges (sacking). IAEG Bull. 35, 31–36.
Sirangelo, B., Braca, G., 2004. Identification of hazard conditions for mudflow
occurrence by hydrological model. Application of FLaIR model to Sarno warning
system. Eng. Geol. 73, 267–276.
Sorriso-Valvo, M., 1995. Considerazioni sul limite tra deformazione gravitativi profonda
di versante e frana. Mem. Soc. Geol. Ital. 50, 179–185.
Ter Stepanian, G., 1966. Type of depth creep of slopes in rock masses. Probl. Geomeh. 3,
49–69.
Tibaldi, A., Rovida, A., Corazzato, C., 2004. A giant deep-seated slope deformation in the
Italian Alps studied by paleoseismological and morphometric techniques. Geomorphology
58, 27–47.
Varnes, D.J., Radbruch-Hall, D., Savage, W.Z., 1989. Topographic and structural
conditions in area of gravitational spreading of ridges in the western United States.
U.S. Geol. Surv. Prof. Paper 1496, 1–28.
VELISAR Working Group, 2006. Ground velocity maps of Italian seismogenic areas.
http://kharita.rm.ingv.it/gmaps/vel, Istituto Nazionale di Geofisica e Vulcanologia —
Rome, Italy.
Wright, T.J., Parsons, B.E., Lu, Z., 2004. Toward mapping surface deformation in three
dimensions using InSAR.Geophys. Res. Lett. 31 (1), L01607. doi:10.1029/2003GL018827.
Zischinsky, U., 1966. On the deformation of high slopes. Proc. Ist Conf. Int. Soc. Rock
Mech., Lisbon, Sect., vol. 2, pp. 179–185.
Zischinsky, U., 1969. Uber Sackungen. Rock Mech. I, 30–52.
Type
article
File(s)
No Thumbnail Available
Name
Moro et al. Geomorphology.pdf
Size
20.43 MB
Format
Adobe PDF
Checksum (MD5)
bd0abe61fe701a293399f6db17b849e6