Options
Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The example of the Nisida eruption
Author(s)
Language
English
Obiettivo Specifico
2V. Struttura e sistema di alimentazione dei vulcani
4V. Processi pre-eruttivi
6A. Geochimica per l'ambiente e geologia medica
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
/427 (2016)
ISSN
0009-2541
Publisher
Elsevier
Pages (printed)
109-124
Issued date
2016
Abstract
We have carried out a detailed petrological investigation on products of the poorly understood Nisida eruption,
one of the most recent volcanic events (~4 ka BP) at Campi Flegrei caldera. We present major oxide contents and Sr–Nd isotopic data determined on bulk rock, groundmass and separated phenocrysts, along with major and volatile elements (H2O Cl, S and CO2) content of clinopyroxene-hosted melt inclusions from pumice fragments representative of the eruption. We use these to elaborate the role of magmatic evolution processes and fluid transfer prior to, and during, the Nisida eruption.The results indicate that the eruption was triggered by the arrival of a volatile-rich, shoshonite–latite magma. This magma was similar in terms of Sr and Nd isotopes (87Sr/86Sr ~0.70730; 143Nd/144Nd ~0.51250) to the Astroni 6 magmatic component. We infer that emplacement of this magma triggered resurgence of the caldera floor, and fed a large part of the volcanic activity at Campi Flegrei caldera during the past 5 ka. The new data on the Nisida eruption and other recent eruptions at Campi Flegrei, together with published data, suggest that fractional crystallization, and potentially fluid transfer from deep to shallow depths may account for most of the chemical variability of the erupted melt. Additional processes, such as magma mingling/mixing, and/or entrapment of antecrysts into the magma prior to the Nisida eruption are required to explain the large isotopic variation displayed by the analyzed products. The Nisida eruption occurred in the eastern sector of the resurgent Campi Flegrei caldera. In this sector, presently affected by an extensional stress regime, previous studies suggest that a Nisida-like eruption would be likely if the level of activity in the caldera were to intensify. In an area with such structural conditions, the ascent of a volatilerich magma such as that which erupted at Nisida should generate geophysical and geochemical signals detectable by an efficient monitoring network. The results of this investigation should inform the study of other active calderas worldwide that are experiencing persistent unrest, such as Rabaul, Aira, Iwo-Jima, Santorini, Long Valley and Yellowstone.
one of the most recent volcanic events (~4 ka BP) at Campi Flegrei caldera. We present major oxide contents and Sr–Nd isotopic data determined on bulk rock, groundmass and separated phenocrysts, along with major and volatile elements (H2O Cl, S and CO2) content of clinopyroxene-hosted melt inclusions from pumice fragments representative of the eruption. We use these to elaborate the role of magmatic evolution processes and fluid transfer prior to, and during, the Nisida eruption.The results indicate that the eruption was triggered by the arrival of a volatile-rich, shoshonite–latite magma. This magma was similar in terms of Sr and Nd isotopes (87Sr/86Sr ~0.70730; 143Nd/144Nd ~0.51250) to the Astroni 6 magmatic component. We infer that emplacement of this magma triggered resurgence of the caldera floor, and fed a large part of the volcanic activity at Campi Flegrei caldera during the past 5 ka. The new data on the Nisida eruption and other recent eruptions at Campi Flegrei, together with published data, suggest that fractional crystallization, and potentially fluid transfer from deep to shallow depths may account for most of the chemical variability of the erupted melt. Additional processes, such as magma mingling/mixing, and/or entrapment of antecrysts into the magma prior to the Nisida eruption are required to explain the large isotopic variation displayed by the analyzed products. The Nisida eruption occurred in the eastern sector of the resurgent Campi Flegrei caldera. In this sector, presently affected by an extensional stress regime, previous studies suggest that a Nisida-like eruption would be likely if the level of activity in the caldera were to intensify. In an area with such structural conditions, the ascent of a volatilerich magma such as that which erupted at Nisida should generate geophysical and geochemical signals detectable by an efficient monitoring network. The results of this investigation should inform the study of other active calderas worldwide that are experiencing persistent unrest, such as Rabaul, Aira, Iwo-Jima, Santorini, Long Valley and Yellowstone.
References
Acocella, V., Di Lorenzo, R., Newhall, C., Scandone, R., 2015. An overview of recent (1988
to 2014) caldera unrest: knowledge and perspectives. Rev. Geophys. 53 (3), 896–955.
http://dx.doi.org/10.1002/2015RG000492.
Amoruso, A., Crescentini, L., Sabbetta, I., De Martino, P., Obrizzo, F., Tammaro, U., 2014.
Clues to the cause of the 2011-2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophisical Res. Lett. 41 (9), 3081–3308.
Arienzo, I., Moretti, R., Civetta, L., Orsi, G., Papale, P., 2010. The feeding system of AgnanoMonte Spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem. Geol. 270 (1–4), 135–147.
Arienzo, I., Heumann, A., Wörner, G., Civetta, L., Orsi, G., 2011. Processes and timescales of
magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy).
Earth Planet. Sci. Lett. 306, 217–228.
Arienzo, I., D'Antonio, M., Di Renzo, V., Tonarini, S., Minolfi, G., Orsi, G., Carandente, A.,
Belviso, P., Civetta, L., 2015. Isotopic microanalysis sheds light on the magmatic
endmembers feeding volcanic eruptions: the Astroni 6 case study (Campi Flegrei,
Italy). J. Volcanol. Geotherm. Res. 304, 24–37. http://dx.doi.org/10.1016/j.jvolgeores.
2015.08.003.
Barberi, F., Corrado, G., Innocenti, F., Luongo, G., 1984. Phlegraean Fields 1982–1984; brief
chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47 (2),
175–185.
Bianco, F., Del Pezzo, E., Saccorotti, G., Ventura, G., 2004. The role of hydrothermal fluids in
triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: evidence from
seismological and mesostructural data. J. Volcanol. Geotherm. Res. 133, 229–246.
Blundy, J., Cashman, K.V., Rust, A., Witham, F., 2010. A case for CO2-rich arc magmas. Earth
Planet. Sci. Lett. 290, 289–301.
Brown, R.J., Civetta, L., Arienzo, I., D'Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.L.,
Albert, P.G., Menzies, M.A., 2014. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol.
168, 1035. http://dx.doi.org/10.1007/s00410-014-1035-1.
Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim.
Cosmochim. Acta 71 (12), 3040–3055.
Cannatelli, C., Lima, A., Bodnar, R.J., De Vivo, B., Webster, J.D., Fedele, L., 2007. Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi
Flegrei (Italy). Chem. Geol. 237 (3–4), 418–432.
Capuano, P., Russo, G., Civetta, L., Orsi, G., D'Antonio, M., Moretti, R., 2013. The active portion of the Campi Flegrei caldera structure imaged by 3D inversion of gravity data.
Geochem. Geophys. Geosyst. 14 (10), 4681–4697.
Fig. A2. (A) Classification diagram for clinopyroxenes; (B, C, D) binary diagrams for all analyzed Nisida clinopyroxenes (element concentrations as atoms per formula unit, apfu; formula
calculated on the basis of number of atoms for 6 oxygens and 4 cations), showing a clear change of the cpx composition with increasing degree of magmatic differentiation. The
compositional field of clinopyroxenes from Campi Flegrei rocks was redrawn after Melluso et al. (2012).
122 I. Arienzo et al. / Chemical Geology 427 (2016) 109–124
Cashman, K., Blundy, J., 2013. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib. Mineral. Petrol. 166, 703–729.
Cecchetti, A., Marianelli, P., Sbrana, A., 2002-2003. L'eruzione di Astroni (caldera dei
Campi Flegrei): Dati preliminari dallo studio delle inclusioni silicatiche. Atti Soc.
Tosc. Sci. Nat. Mem. Ser A 108, 59–63.
Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2
degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys.
Res. 106 (B8), 213–221.
Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma
degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy).
Geophys. Res. Lett. 30 (8), 1434. http://dx.doi.org/10.1029/2002GL01679.
Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F., 2012. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical
simulations. Geology 40, 943–946.
Chiodini, G., Vandemeulebrouck, J., Caliro, S., D'Auria, L., De Martino, P., Mangiacapra, A.,
Petrillo, Z., 2015. Evidence of thermal-driven processes triggering the 2005–2014 unrest at campi flegrei caldera. Earth Planet. Sci. Lett. 414, 58–67.
Cipriani, F., Marianelli, P., Sbrana, A., 2008. Studio di una sequenza piroclastica del vulcano
della Solfatara (Campi Flegrei). Considerazioni vulcanologiche e sul sistema di
alimentazione. Atti Soc. Tosc. Sci. Nat. Mem. Ser. A 113, 39–48.
Collins, S.J., Pyle, D.M., Maclennan, J., 2009. Melt inclusions track pre-eruption storage and
dehydration of magmas at Etna. Geology 37, 571–574.
Costa, F., Morgan, D., 2011. Time constraints from chemical equilibration in magmatic
crystals. In: Dosseto, A., Turner, S.P., Van Orman, J.A. (Eds.), Timescales of Magmatic
Processes: From Core to Atmosphere. Blackwell Publishing Ltd., pp. 125–159.
D'Antonio, M., 2011. Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J. Volcanol. Geotherm. Res. 200, 91–98.
D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di
Vito, M.A., Isaia, R., 1999. The present state of the magmatic system of the Campi
Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka.
J. Volcanol. Geotherm. Res. 91, 247–268.
D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Di Renzo, V., 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In:
Beccaluva, L., Bianchini, G., Wilson, M (Eds.), Cenozoic volcanism in the Mediterranean area. Geol. Soc. Am. Spec. Pap. 418, pp. 203–220. http://dx.doi.org/10.1130/2007.
D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Dallai, L., Moretti, R., Orsi, G., Andria, M.,
Trecalli, A., 2013. Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy). Contrib. Mineral. Petrol. 165,
1173–1194. http://dx.doi.org/10.1007/s00410-013-0853-x.
D'Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo, Bascio D., Martini,
M., Ricciardi, G.P., Ricciolino, P., Ricco, C., 2011. Repeated fluid-transfer episodes as a
mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010).
J. Geophys. Res. 116, B04313. http://dx.doi.org/10.1029/2010JB007837.
de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., di Cesare, T., Di Vito,
M.A., Fisher, R.V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M.,
Southon, J., 1999. The Agnano–Monte Spina eruption (4100 years BP) in the restless
Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 269–301.
Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at
Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009.
J. Volcanol. Geotherm. Res. 195, 48–56.
Di Girolamo, P., Ghiara, M.R., Lirer, L., Munno, R., Rolandi, G., Stanzione, D., 1984.
Vulcanologia e petrologia dei Campi Flegrei. Boll. Soc. Geol. Ital. 103, 349–413.
Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M.A., Orsi, G., 2011.
The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol. 281, 227–241.
Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi,
M., 1999. Volcanism and deformation since 12000 years at the Campi Flegrei caldera
(Italy). J. Volcanol. Geotherm. Res. 91, 221–246.
Di Vito, M.A., Arienzo, I., Braia, G., Civetta, L., D'Antonio, M., Orsi, G., 2011. The Averno 2
fissure eruption: a recent small size explosive event at the Campi Flegrei caldera.
Bull. Volcanol. 73, 295–320. http://dx.doi.org/10.1007/s00445-010-0417-0.
Fedele, L., Insinga, D.D., Calvert, A.T., Morra, V., Perrotta, A., Scarpati, C., 2011. 40Ar/39Ar
dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new
chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Volcanol.
73, 1323–1336. http://dx.doi.org/10.1007/s00445-011-0478-8.
Ferlito, C., Lanzafame, G., 2010. The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119, 642–650.
Fourmentraux, C., Métrich, N., Bertagnini, A., Rosi, M., 2012. Crystal fractionation, magma
step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields,
Italy). Contrib. Mineral. Petrol. 163, 1121–1137. http://dx.doi.org/10.1007/s00410-
012-0720-1.
Fulignati, P., Marianelli, M., Proto, M., Sbrana, A., 2004. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the
Breccia Museo unit (Campanian Ignimbrite eruption Italy). J. Volcanol. Geotherm.
Res. 133, 141–155.
Gaeta, F.S., Peluso, F., Arienzo, I., Castagnolo, D., De Natale, G., Milano, G., Albanese, C.,
Mita, D.G., 2003. A physical appraisal of a new aspect of bradyseism: the miniuplifts.
J. Geophys. Res. 108 (B8), 2363. http://dx.doi.org/10.1029/2002JB001913.
Gozzi, F., Gaeta, M., Freda, C., Mollo, S., Di Rocco, T., Marra, F., Dallai, L., Pack, A., 2014. Primary
magmatic calcite reveals origin from crustal carbonate. Lithos 190–191, 191–203.
Grove, T.L., Bryan, W.B., 1983. Fractionation of pyroxene-phyric MORB at low pressure: an
experimental study. Contrib. Mineral. Petrol. 84, 293–309.
Guidoboni, E., Ciuccarelli, C., 2011. The Campi Flegrei caldera: historical revision and new
data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull. Volcanol. 73 (6), 655–677.
Jolis, E.M., Troll, V.R., Harris, C., Freda, C., Gaeta, M., Orsi, G., Siebe, C., 2015. Skarn xenolith
record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem. Geol. 415, 17–36.
Kilgour, G., Blundy, J., Cashman, K., Mader, H.M., 2013. Small volume andesite magmas
and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib. Mineral. Petrol. 166, 371–392.
Langmuir, C.H., Vocke Jr., R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation
with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392.
Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press (236 pp.).
Lirer, L., 1965. Nisida: vulcano del terzo periodo flegreo. Rend. Acc. Sci. Fis. Matem. Soc.
Naz. Sci., Lett. Arti in Napoli, Serie 4 p. 32.
Mangiacapra, A., Moretti, R., Rutherford, M., Civetta, L., Orsi, G., Papale, P., 2008. The deep
magmatic system of the Campi Flegrei caldera (Italy). Geophys. Res. Lett. 35, L21304.
http://dx.doi.org/10.1029/2008GL035550.
Marianelli, P., Sbrana, A., Proto, M., 2006. Magma chamber of the Campi Flegrei supervolcano
at the time of eruption of the Campanian Ignimbrite. Geology 34 (11), 937–940.
Mazzeo, F.C., D'Antonio, M., Arienzo, I., Aulinas, M., Di Renzo, V., Gimeno, D., 2014.
Subduction-related enrichment of the Phlegrean Volcanic District (Southern Italy)
mantle source: new constraints on the characteristics of the sedimentary components. Chem. Geol. 386, 165–183. http://dx.doi.org/10.1016/j.chemgeo.2014.08.014.
Melluso, L., De’ Gennaro, R., Fedele, L., Franciosi, L., Morra, V., 2012. Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mgrich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields
(Italy). Geol. Mag. 149 (3), 532–550.
Melluso, L., Morra, V., Guarino, V., De’ Gennaro, R., Franciosi, L., Grifa, C., 2014. The crystallization of shoshonitic to peralkaline trachyphonolitic magmas in a H2O–Cl–F-rich environment at Ischia (Italy), with implications for the feeder system of the Campania
Plain volcanoes. Lithos 210, 242–259.
Moretti, R., Arienzo, I., Orsi, G., Civetta, L., D'Antonio, M., 2013. The deep plumbing system
of the Ischia Island: a physico-chemical window on the fluid-saturated and CO2-
sustained Neapolitan volcanism (Southern Italy). J. Petrol. 54, 951–984. http://dx.
doi.org/10.1093/petrology/egt002.
Mormone, A., Piochi, M., Bellatreccia, F., De Astis, G., Moretti, R., Della, Ventura G., Cavallo, A.,
Mangiacapra, A., 2011. A CO2–rich magma source beneath the Phlegraen Volcanic District (Southern Italy): evidence from a melt inclusion study. Chem. Geol. 287, 66–80.
Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi
Flegrei caldera. Bull. Volcanol. 66, 514–530.
Orsi, G., Di Vito, M.A., Selva, J., Marzocchi, W., 2009. Long-term forecast of eruption style
and size at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 287, 265–276.
Orsi, G., Cioni, R., Di Renzo, V., 2013. The Campanian Plain during the Bronze Age: development of volcanism and impact of the Vesuvius Avellino eruption in a densely populated area. Proceed. 4th Archaeol. Conf. Central Germany “1600-Cultural Change in
the shadow of the Thera-Eruption?”, pp. 117–134.
Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the saturation
surface of H2O + CO2 fluids in silicate melts. Chem. Geol. 229 (1–3), 78–95.
Perugini, D., Poli, G., Petrelli, M., De Campos, C.P., Dingwell, D.B., 2010. Time-scales of recent Phlegrean Fields eruptions inferred from the application of a ‘diffusive fractionation’ model of trace elements. Bull. Volcanol. 72, 431–447.
Putirka, K., 2008. Thermometers and barometers for volcanic systems. Rev. Mineral.
Geochem. 69, 61–120.
Ricco, C., Aquino, I., Borgstrom, S.E., Del Gaudio, C., 2007. A study of tilt change recorded from
July to October 2006 at Phlegraean Fields (Naples, Italy). Ann. Geophys. 50 (5), 661–674.
Roach, A.L., 2005. The Evolution of Silicic Magmatism in the Post-Caldera Volcanism of the
Phlegrean Fields, Italy Ph. D. Thesis Brown University.
Saccorotti, G., Petrosino, S., Bianco, F., Castellano, M., Galluzzo, D., La Rocca, M., Del Pezzo,
E., Zaccarelli, L., Cusano, P., 2007. Seismicity associated with the 2004–2006 renewed
ground uplift at Campi Flegrei Caldera, Italy. Phys. Earth Planet. Inter. 165, 14–24.
Selva, J., Orsi, G., Di Vito, M.A., Marzocchi, W., Sandri, L., 2012. Probability hazard map for
future vent opening at the Campi Flegrei caldera, Italy. Bull. Volcanol. 74, 497–510.
Signorelli, S., Vaggelli, G., Francalanci, L., Rosi, M., 1999. Origin of magmas feeding the
Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields Italy): constraints based on matrix glass and glass inclusion compositions. J. Volcanol.
Geotherm. Res. 91, 199–220.
Signorelli, S., Vaggelli, G., Romano, C., Carroll, M.R., 2001. Volatile element zonation in
Campanian Ignimbrite magmas (Phlegrean Fields Italy): evidence from the study of
glass inclusion and matrix glasses. Contrib. Mineral. Petrol. 140, 543–553.
Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of
post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 30, 3638–3660.
Stormer, J.C., Nicholls, J.A., 1978. XLFRAC: a program for interactive testing of magmatic
differentiation models. Comput. Geosci. 4, 143–159.
Thornton, C.P., Tuttle, O.F., 1960. Chemistry of igneous rocks; I, differentiation index. Am.
J. Sci. 258, 664–684.
Tonarini, S., D'Antonio, M., Di Vito, M.A., Orsi, G., Carandente, A., 2009. Geochemical and
isotopical (B, Sr, Nd) evidence for mixing and mingling processes in the magmatic
system feeding the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera
(South Italy). Lithos 107, 135–151.
Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., Berrino, G., 2011. On deformation sources
in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet.
Sci. Lett. 306 (3), 175–185.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am.
Mineral. 95, 185–187.
Wilkinson, J.F.G., Hensel, H.D., 1994. Nephelines and analcimes in some alkaline igneous
rocks. Contrib. Mineral. Petrol. 118 (1), 79–91.
I. Arienzo et al. / Chemical Geology 427 (2016) 109–124 12
Baker, D.R., Freda, C., Brooker, R.A., Scarlato, P., 2005e. Volatile diffusion in silicate melts
and its effects on melt inclusions. Ann. Geophys. 48 (4–5), 699–717.
D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di
Vito, M.A., Isaia, R., 1999l. The present state of the magmatic system of the Campi
Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka.
J. Volcanol. Geotherm. Res. 91, 247–268.
Di Matteo, V., Mangiacapra, A., Dingwell, D.B., Orsi, G., 2006e. Water solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy).
Chem. Geol. 229 (1–3), 113–124.
Goldstein, S.L., Deines, P., Oelkers, E.H., Rudnick, R.L., Walter, L.M., 2003l. Standards for publication of isotopic ratio and chemical data in chemical geology. Chem. Geol. 202, 1–4.
Lange, R.A., Carmichael, I.S.E., 1987e. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–
Al2O3–TiO2–SiO2 liquids — new measurements and derived partial molar properties.
Geochim. Cosmochim. Acta 51 (11), 29.
to 2014) caldera unrest: knowledge and perspectives. Rev. Geophys. 53 (3), 896–955.
http://dx.doi.org/10.1002/2015RG000492.
Amoruso, A., Crescentini, L., Sabbetta, I., De Martino, P., Obrizzo, F., Tammaro, U., 2014.
Clues to the cause of the 2011-2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophisical Res. Lett. 41 (9), 3081–3308.
Arienzo, I., Moretti, R., Civetta, L., Orsi, G., Papale, P., 2010. The feeding system of AgnanoMonte Spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem. Geol. 270 (1–4), 135–147.
Arienzo, I., Heumann, A., Wörner, G., Civetta, L., Orsi, G., 2011. Processes and timescales of
magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy).
Earth Planet. Sci. Lett. 306, 217–228.
Arienzo, I., D'Antonio, M., Di Renzo, V., Tonarini, S., Minolfi, G., Orsi, G., Carandente, A.,
Belviso, P., Civetta, L., 2015. Isotopic microanalysis sheds light on the magmatic
endmembers feeding volcanic eruptions: the Astroni 6 case study (Campi Flegrei,
Italy). J. Volcanol. Geotherm. Res. 304, 24–37. http://dx.doi.org/10.1016/j.jvolgeores.
2015.08.003.
Barberi, F., Corrado, G., Innocenti, F., Luongo, G., 1984. Phlegraean Fields 1982–1984; brief
chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47 (2),
175–185.
Bianco, F., Del Pezzo, E., Saccorotti, G., Ventura, G., 2004. The role of hydrothermal fluids in
triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: evidence from
seismological and mesostructural data. J. Volcanol. Geotherm. Res. 133, 229–246.
Blundy, J., Cashman, K.V., Rust, A., Witham, F., 2010. A case for CO2-rich arc magmas. Earth
Planet. Sci. Lett. 290, 289–301.
Brown, R.J., Civetta, L., Arienzo, I., D'Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.L.,
Albert, P.G., Menzies, M.A., 2014. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol.
168, 1035. http://dx.doi.org/10.1007/s00410-014-1035-1.
Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim.
Cosmochim. Acta 71 (12), 3040–3055.
Cannatelli, C., Lima, A., Bodnar, R.J., De Vivo, B., Webster, J.D., Fedele, L., 2007. Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi
Flegrei (Italy). Chem. Geol. 237 (3–4), 418–432.
Capuano, P., Russo, G., Civetta, L., Orsi, G., D'Antonio, M., Moretti, R., 2013. The active portion of the Campi Flegrei caldera structure imaged by 3D inversion of gravity data.
Geochem. Geophys. Geosyst. 14 (10), 4681–4697.
Fig. A2. (A) Classification diagram for clinopyroxenes; (B, C, D) binary diagrams for all analyzed Nisida clinopyroxenes (element concentrations as atoms per formula unit, apfu; formula
calculated on the basis of number of atoms for 6 oxygens and 4 cations), showing a clear change of the cpx composition with increasing degree of magmatic differentiation. The
compositional field of clinopyroxenes from Campi Flegrei rocks was redrawn after Melluso et al. (2012).
122 I. Arienzo et al. / Chemical Geology 427 (2016) 109–124
Cashman, K., Blundy, J., 2013. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib. Mineral. Petrol. 166, 703–729.
Cecchetti, A., Marianelli, P., Sbrana, A., 2002-2003. L'eruzione di Astroni (caldera dei
Campi Flegrei): Dati preliminari dallo studio delle inclusioni silicatiche. Atti Soc.
Tosc. Sci. Nat. Mem. Ser A 108, 59–63.
Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2
degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys.
Res. 106 (B8), 213–221.
Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma
degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy).
Geophys. Res. Lett. 30 (8), 1434. http://dx.doi.org/10.1029/2002GL01679.
Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F., 2012. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical
simulations. Geology 40, 943–946.
Chiodini, G., Vandemeulebrouck, J., Caliro, S., D'Auria, L., De Martino, P., Mangiacapra, A.,
Petrillo, Z., 2015. Evidence of thermal-driven processes triggering the 2005–2014 unrest at campi flegrei caldera. Earth Planet. Sci. Lett. 414, 58–67.
Cipriani, F., Marianelli, P., Sbrana, A., 2008. Studio di una sequenza piroclastica del vulcano
della Solfatara (Campi Flegrei). Considerazioni vulcanologiche e sul sistema di
alimentazione. Atti Soc. Tosc. Sci. Nat. Mem. Ser. A 113, 39–48.
Collins, S.J., Pyle, D.M., Maclennan, J., 2009. Melt inclusions track pre-eruption storage and
dehydration of magmas at Etna. Geology 37, 571–574.
Costa, F., Morgan, D., 2011. Time constraints from chemical equilibration in magmatic
crystals. In: Dosseto, A., Turner, S.P., Van Orman, J.A. (Eds.), Timescales of Magmatic
Processes: From Core to Atmosphere. Blackwell Publishing Ltd., pp. 125–159.
D'Antonio, M., 2011. Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J. Volcanol. Geotherm. Res. 200, 91–98.
D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di
Vito, M.A., Isaia, R., 1999. The present state of the magmatic system of the Campi
Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka.
J. Volcanol. Geotherm. Res. 91, 247–268.
D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Di Renzo, V., 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In:
Beccaluva, L., Bianchini, G., Wilson, M (Eds.), Cenozoic volcanism in the Mediterranean area. Geol. Soc. Am. Spec. Pap. 418, pp. 203–220. http://dx.doi.org/10.1130/2007.
D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Dallai, L., Moretti, R., Orsi, G., Andria, M.,
Trecalli, A., 2013. Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy). Contrib. Mineral. Petrol. 165,
1173–1194. http://dx.doi.org/10.1007/s00410-013-0853-x.
D'Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo, Bascio D., Martini,
M., Ricciardi, G.P., Ricciolino, P., Ricco, C., 2011. Repeated fluid-transfer episodes as a
mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010).
J. Geophys. Res. 116, B04313. http://dx.doi.org/10.1029/2010JB007837.
de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., di Cesare, T., Di Vito,
M.A., Fisher, R.V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M.,
Southon, J., 1999. The Agnano–Monte Spina eruption (4100 years BP) in the restless
Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 269–301.
Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at
Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009.
J. Volcanol. Geotherm. Res. 195, 48–56.
Di Girolamo, P., Ghiara, M.R., Lirer, L., Munno, R., Rolandi, G., Stanzione, D., 1984.
Vulcanologia e petrologia dei Campi Flegrei. Boll. Soc. Geol. Ital. 103, 349–413.
Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M.A., Orsi, G., 2011.
The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem. Geol. 281, 227–241.
Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi,
M., 1999. Volcanism and deformation since 12000 years at the Campi Flegrei caldera
(Italy). J. Volcanol. Geotherm. Res. 91, 221–246.
Di Vito, M.A., Arienzo, I., Braia, G., Civetta, L., D'Antonio, M., Orsi, G., 2011. The Averno 2
fissure eruption: a recent small size explosive event at the Campi Flegrei caldera.
Bull. Volcanol. 73, 295–320. http://dx.doi.org/10.1007/s00445-010-0417-0.
Fedele, L., Insinga, D.D., Calvert, A.T., Morra, V., Perrotta, A., Scarpati, C., 2011. 40Ar/39Ar
dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new
chronostratigraphic reconstruction of the Holocene volcanic activity. Bull. Volcanol.
73, 1323–1336. http://dx.doi.org/10.1007/s00445-011-0478-8.
Ferlito, C., Lanzafame, G., 2010. The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119, 642–650.
Fourmentraux, C., Métrich, N., Bertagnini, A., Rosi, M., 2012. Crystal fractionation, magma
step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields,
Italy). Contrib. Mineral. Petrol. 163, 1121–1137. http://dx.doi.org/10.1007/s00410-
012-0720-1.
Fulignati, P., Marianelli, M., Proto, M., Sbrana, A., 2004. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the
Breccia Museo unit (Campanian Ignimbrite eruption Italy). J. Volcanol. Geotherm.
Res. 133, 141–155.
Gaeta, F.S., Peluso, F., Arienzo, I., Castagnolo, D., De Natale, G., Milano, G., Albanese, C.,
Mita, D.G., 2003. A physical appraisal of a new aspect of bradyseism: the miniuplifts.
J. Geophys. Res. 108 (B8), 2363. http://dx.doi.org/10.1029/2002JB001913.
Gozzi, F., Gaeta, M., Freda, C., Mollo, S., Di Rocco, T., Marra, F., Dallai, L., Pack, A., 2014. Primary
magmatic calcite reveals origin from crustal carbonate. Lithos 190–191, 191–203.
Grove, T.L., Bryan, W.B., 1983. Fractionation of pyroxene-phyric MORB at low pressure: an
experimental study. Contrib. Mineral. Petrol. 84, 293–309.
Guidoboni, E., Ciuccarelli, C., 2011. The Campi Flegrei caldera: historical revision and new
data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull. Volcanol. 73 (6), 655–677.
Jolis, E.M., Troll, V.R., Harris, C., Freda, C., Gaeta, M., Orsi, G., Siebe, C., 2015. Skarn xenolith
record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem. Geol. 415, 17–36.
Kilgour, G., Blundy, J., Cashman, K., Mader, H.M., 2013. Small volume andesite magmas
and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib. Mineral. Petrol. 166, 371–392.
Langmuir, C.H., Vocke Jr., R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation
with applications to Icelandic basalts. Earth Planet. Sci. Lett. 37, 380–392.
Le Maitre, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press (236 pp.).
Lirer, L., 1965. Nisida: vulcano del terzo periodo flegreo. Rend. Acc. Sci. Fis. Matem. Soc.
Naz. Sci., Lett. Arti in Napoli, Serie 4 p. 32.
Mangiacapra, A., Moretti, R., Rutherford, M., Civetta, L., Orsi, G., Papale, P., 2008. The deep
magmatic system of the Campi Flegrei caldera (Italy). Geophys. Res. Lett. 35, L21304.
http://dx.doi.org/10.1029/2008GL035550.
Marianelli, P., Sbrana, A., Proto, M., 2006. Magma chamber of the Campi Flegrei supervolcano
at the time of eruption of the Campanian Ignimbrite. Geology 34 (11), 937–940.
Mazzeo, F.C., D'Antonio, M., Arienzo, I., Aulinas, M., Di Renzo, V., Gimeno, D., 2014.
Subduction-related enrichment of the Phlegrean Volcanic District (Southern Italy)
mantle source: new constraints on the characteristics of the sedimentary components. Chem. Geol. 386, 165–183. http://dx.doi.org/10.1016/j.chemgeo.2014.08.014.
Melluso, L., De’ Gennaro, R., Fedele, L., Franciosi, L., Morra, V., 2012. Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mgrich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields
(Italy). Geol. Mag. 149 (3), 532–550.
Melluso, L., Morra, V., Guarino, V., De’ Gennaro, R., Franciosi, L., Grifa, C., 2014. The crystallization of shoshonitic to peralkaline trachyphonolitic magmas in a H2O–Cl–F-rich environment at Ischia (Italy), with implications for the feeder system of the Campania
Plain volcanoes. Lithos 210, 242–259.
Moretti, R., Arienzo, I., Orsi, G., Civetta, L., D'Antonio, M., 2013. The deep plumbing system
of the Ischia Island: a physico-chemical window on the fluid-saturated and CO2-
sustained Neapolitan volcanism (Southern Italy). J. Petrol. 54, 951–984. http://dx.
doi.org/10.1093/petrology/egt002.
Mormone, A., Piochi, M., Bellatreccia, F., De Astis, G., Moretti, R., Della, Ventura G., Cavallo, A.,
Mangiacapra, A., 2011. A CO2–rich magma source beneath the Phlegraen Volcanic District (Southern Italy): evidence from a melt inclusion study. Chem. Geol. 287, 66–80.
Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi
Flegrei caldera. Bull. Volcanol. 66, 514–530.
Orsi, G., Di Vito, M.A., Selva, J., Marzocchi, W., 2009. Long-term forecast of eruption style
and size at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 287, 265–276.
Orsi, G., Cioni, R., Di Renzo, V., 2013. The Campanian Plain during the Bronze Age: development of volcanism and impact of the Vesuvius Avellino eruption in a densely populated area. Proceed. 4th Archaeol. Conf. Central Germany “1600-Cultural Change in
the shadow of the Thera-Eruption?”, pp. 117–134.
Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the saturation
surface of H2O + CO2 fluids in silicate melts. Chem. Geol. 229 (1–3), 78–95.
Perugini, D., Poli, G., Petrelli, M., De Campos, C.P., Dingwell, D.B., 2010. Time-scales of recent Phlegrean Fields eruptions inferred from the application of a ‘diffusive fractionation’ model of trace elements. Bull. Volcanol. 72, 431–447.
Putirka, K., 2008. Thermometers and barometers for volcanic systems. Rev. Mineral.
Geochem. 69, 61–120.
Ricco, C., Aquino, I., Borgstrom, S.E., Del Gaudio, C., 2007. A study of tilt change recorded from
July to October 2006 at Phlegraean Fields (Naples, Italy). Ann. Geophys. 50 (5), 661–674.
Roach, A.L., 2005. The Evolution of Silicic Magmatism in the Post-Caldera Volcanism of the
Phlegrean Fields, Italy Ph. D. Thesis Brown University.
Saccorotti, G., Petrosino, S., Bianco, F., Castellano, M., Galluzzo, D., La Rocca, M., Del Pezzo,
E., Zaccarelli, L., Cusano, P., 2007. Seismicity associated with the 2004–2006 renewed
ground uplift at Campi Flegrei Caldera, Italy. Phys. Earth Planet. Inter. 165, 14–24.
Selva, J., Orsi, G., Di Vito, M.A., Marzocchi, W., Sandri, L., 2012. Probability hazard map for
future vent opening at the Campi Flegrei caldera, Italy. Bull. Volcanol. 74, 497–510.
Signorelli, S., Vaggelli, G., Francalanci, L., Rosi, M., 1999. Origin of magmas feeding the
Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields Italy): constraints based on matrix glass and glass inclusion compositions. J. Volcanol.
Geotherm. Res. 91, 199–220.
Signorelli, S., Vaggelli, G., Romano, C., Carroll, M.R., 2001. Volatile element zonation in
Campanian Ignimbrite magmas (Phlegrean Fields Italy): evidence from the study of
glass inclusion and matrix glasses. Contrib. Mineral. Petrol. 140, 543–553.
Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of
post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 30, 3638–3660.
Stormer, J.C., Nicholls, J.A., 1978. XLFRAC: a program for interactive testing of magmatic
differentiation models. Comput. Geosci. 4, 143–159.
Thornton, C.P., Tuttle, O.F., 1960. Chemistry of igneous rocks; I, differentiation index. Am.
J. Sci. 258, 664–684.
Tonarini, S., D'Antonio, M., Di Vito, M.A., Orsi, G., Carandente, A., 2009. Geochemical and
isotopical (B, Sr, Nd) evidence for mixing and mingling processes in the magmatic
system feeding the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera
(South Italy). Lithos 107, 135–151.
Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., Berrino, G., 2011. On deformation sources
in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet.
Sci. Lett. 306 (3), 175–185.
Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am.
Mineral. 95, 185–187.
Wilkinson, J.F.G., Hensel, H.D., 1994. Nephelines and analcimes in some alkaline igneous
rocks. Contrib. Mineral. Petrol. 118 (1), 79–91.
I. Arienzo et al. / Chemical Geology 427 (2016) 109–124 12
Baker, D.R., Freda, C., Brooker, R.A., Scarlato, P., 2005e. Volatile diffusion in silicate melts
and its effects on melt inclusions. Ann. Geophys. 48 (4–5), 699–717.
D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di
Vito, M.A., Isaia, R., 1999l. The present state of the magmatic system of the Campi
Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka.
J. Volcanol. Geotherm. Res. 91, 247–268.
Di Matteo, V., Mangiacapra, A., Dingwell, D.B., Orsi, G., 2006e. Water solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy).
Chem. Geol. 229 (1–3), 113–124.
Goldstein, S.L., Deines, P., Oelkers, E.H., Rudnick, R.L., Walter, L.M., 2003l. Standards for publication of isotopic ratio and chemical data in chemical geology. Chem. Geol. 202, 1–4.
Lange, R.A., Carmichael, I.S.E., 1987e. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–
Al2O3–TiO2–SiO2 liquids — new measurements and derived partial molar properties.
Geochim. Cosmochim. Acta 51 (11), 29.
Type
article
File(s)
No Thumbnail Available
Name
Arienzo et al., 2016.pdf
Size
2.77 MB
Format
Adobe PDF
Checksum (MD5)
6b1f4d86b21489b39aa4b99d933f5d00